

PUBLISHED BY
Microsoft Press
A Division of Microsoft Corporation
One Microsoft Way
Redmond, Washington 98052-6399

Copyright © 2010 by Dino Esposito

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by any means
without the written permission of the publisher.

Library of Congress Control Number: 2010925900

Printed and bound in the United States of America.

1 2 3 4 5 6 7 8 9 WCT 5 4 3 2 1 0

Distributed in Canada by H.B. Fenn and Company Ltd.

A CIP catalogue record for this book is available from the British Library.

Microsoft Press books are available through booksellers and distributors worldwide. For further information about
international editions, contact your local Microsoft Corporation office or contact Microsoft Press International directly at
fax (425) 936-7329. Visit our Web site at www.microsoft.com/mspress. Send comments to mspinput@microsoft.com.

Microsoft, Microsoft Press, ActiveX, Excel, IntelliSense, Internet Explorer, MS, MSDN, SharePoint, Silverlight, SQL
Server, Visual Basic, Visual C#, Visual Studio, Win32, Windows, Windows Server, and Windows Vista. Other product
and company names mentioned herein may be the trademarks of their respective owners.

The example companies, organizations, products, domain names, e-mail addresses, logos, people, places, and events depicted
herein are fictitious. No association with any real company, organization, product, domain name, e-mail address, logo,
person, place, or event is intended or should be inferred.

This book expresses the author’s views and opinions. The information contained in this book is provided without any
express, statutory, or implied warranties. Neither the authors, Microsoft Corporation, nor its resellers, or distributors will
be held liable for any damages caused or alleged to be caused either directly or indirectly by this book.

Acquisitions Editor: Ben Ryan
Developmental Editor: Lynn Finnel
Project Editors: Lynn Finnel and Carol Vu
Editorial Production: Ashley Schneider, S4Carlisle Publishing Services
Technical Reviewer: Kenn Scribner; Technical Review services provided by Content Master, a member
of CM Group, Ltd
Cover: Tom Draper Design

Body Part No. X16-88503

To Silvia, Francesco, and Michela, who wait for me and keep me busy.
But I’m happy only when I’m busy.

—Dino

 v

Contents at a Glance

Part I The Programming Paradigm
 1 Goals of ASP.NET MVC and Motivation

for Its Development . 3
 2 The Runtime Environment. 37
 3 The MVC Pattern and Beyond. 81

Part II The Core of ASP.NET MVC
 4 Inside Controllers . 123
 5 Inside Views . 211
 6 Inside Models . 277

Part III Programming Features
 7 Data Entry in ASP.NET MVC. 317
 8 The ASP.NET MVC Infrastructure . 355
 9 AJAX Capabilities . 401
 10 Testability and Unit Testing . 435
 11 Customizing ASP.NET MVC . 477

 vii

Table of Contents
Acknowledgments .xiii

Introduction . xv

Part I The Programming Paradigm

 1 Goals of ASP.NET MVC and Motivation
for Its Development . 3

The Deep Impact of ASP.NET . 5

Productivity Is King . 6

The Web Forms Model . 9

The “Page Controller” Pattern . 11

The ASP.NET Age of Reason . 16

ASP.NET’s Signs of Aging . 16

The Turning Point. 20

ASP.NET MVC at a Glance . 26

ASP.NET MVC Highlights . 26

Web Forms vs. ASP.NET MVC. 30

Summary . 35

 2 The Runtime Environment. 37
The ASP.NET Runtime Machinery . 37

ASP.NET and the IIS Web Server . 38

Life Cycle of an ASP.NET Request . 44

What’s an HTTP Handler, Anyway? . 51

What’s an HTTP Module, Anyway? . 57

URL Routing . 61

The ASP.NET MVC Run-Time Shell . 67

The Big Picture . 68

Processing an ASP.NET MVC Request. 75

Summary . 80

Microsoft is interested in hearing your feedback so we can continually improve our books and learning
resources for you. To participate in a brief online survey, please visit:

www.microsoft.com/learning/booksurvey/

What do you think of this book? We want to hear from you!

viii Table of Contents

 3 The MVC Pattern and Beyond . 81
The Original MVC Pattern. 82

MVC Interaction Model . 82

The Original Idea . 83

Presenting the Actors . 84

Limitations of the MVC Pattern . 89

The Model2 Pattern. 90

MVC and the Web . 90

Model2 and ASP.NET MVC. 93

Presentation-Oriented Variations of MVC . 98

The MVP Pattern . 98

Presentation Model Pattern (Also Known as MVVM) 103

The ASP.NET MVC Project Template . 107

Peculiarities of an ASP.NET MVC Project . 108

ASP.NET MVC Special Folders . 113

Summary . 118

Part II The Core of ASP.NET MVC

 4 Inside Controllers . 123
The Role of Controllers and the Motivation for Using Them 123

Beyond the Code-Behind Approach . 124

Introducing Controllers. 128

Mechanics of Controllers in ASP.NET MVC . 132

Anatomy of an ASP.NET MVC Controller . 135

Inside the Structure of a Controller. 135

Behavior of a Controller . 144

Attributes of Controllers and Action Methods . 156

Writing a Controller . 167

Design of a Controller Class . 167

Should You Use Your Own Base Class?. 176

Special Capabilities. 183

Grouping Controllers. 184

Asynchronous Controllers . 187

Render Actions . 195

Controllers and Testability . 199

Making Controllers Easy to Test . 199

Writing Unit Tests. 204

Summary . 209

 Table of Contents ix

 5 Inside Views . 211
Views and Controllers . 212

From Controllers to Views . 212

Building the Response for the Browser . 213

Anatomy of an ASP.NET MVC View. 215

Selecting the View . 215

Creating the View . 220

The Default View Engine. 222

The Web Forms View Engine . 226

Writing a View . 233

The View’s Template . 235

Filling Up the View. 241

HTML Helpers . 252

Templated HTML Helpers. 257

Datagrids and Paged Views . 261

Testing a View. 273

Summary . 275

 6 Inside Models . 277
What’s the Model, Anyway? . 278

How Many Types of Models Do You Know? . 278

The Models Folder . 282

Domain Model and View-Model. 286

Business Object Modeling . 286

Adding Validation Logic to the Model . 291

Data for the View. 299

Model Binding . 305

The Model Binder in Action . 306

Summary . 313

Part III Programming Features

 7 Data Entry in ASP.NET MVC .317
The Select-Edit-Save Pattern . 318

Presenting Data . 318

Editing Data . 320

Saving Data . 324

Data Validation . 326

Validation on the Server Side. 326

x Table of Contents

Giving Feedback to the User . 334

Data Annotations and Validators . 342

Client-Side Validation . 351

Summary . 354

 8 The ASP.NET MVC Infrastructure . 355
Routing. 356

Dealing with Routes. 356

Keeping an Eye on SEO . 362

Error Handling . 366

Foundations of ASP.NET Error Handling . 366

Dealing with Missing Content . 371

Localization . 374

Making Resources Localizable . 374

Dealing with Resources in ASP.NET MVC. 376

Dependency Injection . 382

Dependency Inversion in Action . 383

A Brief Tour of Unity . 391

Creating a Global Container . 395

Summary . 399

 9 AJAX Capabilities . 401
AJAX in ASP.NET. 401

Partial Rendering . 402

Direct Scripting . 405

AJAX in ASP.NET MVC . 408

The JavaScript API . 408

The Controller Façade . 413

AJAX Helpers in ASP.NET MVC . 420

Partial Rendering in ASP.NET MVC . 428

Summary . 432

 10 Testability and Unit Testing . 435
Testability and Design . 436

Design for Testability. 436

Loosen Up Your Design. 438

Basics of Unit Testing. 443

Working with a Test Harness . 443

Aspects of Testing . 447

 Table of Contents xi

Unit Testing in ASP.NET MVC . 454

Testing Controller Actions . 454

Injecting Mocks and Fakes . 458

Mocking the HTTP Context . 463

More Specific Tests . 471

Summary . 475

 11 Customizing ASP.NET MVC . 477
The Controller Factory. 477

ASP.NET MVC Request Processing . 478

Extending the Default Controller Factory . 480

Invoking Actions. 487

Action Filters . 496

Gallery of Action Filters. 496

Loading Action Filters Dynamically . 505

Action Selectors . 509

Action Results and Rendering . 512

Processing the Result of the Action . 512

Custom ActionResult Objects . 514

View Engines. 521

HTML Helpers . 529

Summary . 538

Appendix: ReSharper and the Power of Tools 539
IntelliSense Extensions. 539

Choose the Right View Name with IntelliSense Tips 540

Action Links and URLs. 541

User Controls . 542

Static Analysis to Detect Missing Views and Actions . 542

Coding Assistants . 543

Creating Views by Usage . 543

Navigation . 545

Controller and View Navigation . 545

Locating Symbols . 547

Navigating Inside Master and Content Pages. 547

Refactoring for ASP.NET MVC . 548

Conclusion . 549

Index . 551

Microsoft is interested in hearing your feedback so we can continually improve our books and learning
resources for you. To participate in a brief online survey, please visit:

www.microsoft.com/learning/booksurvey/

What do you think of this book? We want to hear from you!

 xiii

Acknowledgments
The man who doesn’t read good books has no advantage over the man who can’t
read them.

—Mark Twain

We started discussing this book around the release of ASP.NET MVC 1.0, in the late spring of
2009. It was not exactly an ideal time for making plans, even though business had to go on in
spite of the world financial crisis and severe downturn in the economy. Now that the book is
finished, we seem to live in slightly better times, and we all sincerely hope that the worst of it
is behind us. However, as I look at this book project now that it’s finished, I realize I’m deeply
missing one special person—Lynn Finnel.

Lynn was laid off in the middle of the project as a result of one of the many restructurings
that a lot of companies went through in the past year. Lynn and I have done so many
books together, and we always shared a mutual high level of satisfaction with the outcome.
Not sending chapters and reviews to Lynn any more was a big change in this part of my
 professional life. And, who knows, one day I might have Lynn, at the height of her new career
as a physical therapist, just take care of my poor back, stressed by its unnatural posture and
too many hours of tennis.

Changing the project editor in the middle of a book project can sometimes be a tough
 experience, but as arranged by Carol Vu the transition was seamless. Despite the difficulties
in replacing an editor of Lynn’s caliber, I really didn’t notice any difference.

In the past few months, Ben Ryan got a bunch of e-mails from me asking, with different
tones, always the same question: “Are you still there?” Yes, fortunately, he’s still there with
prompt and insightful suggestions. Cheap and valuable—only two cents each! But I’ve never
valued any advice more than Ben’s two-cent propositions.

And, fortunately, Kenn Scribner is still part of the team and a rock-solid pillar. The degree to
which Kenn can be helpful is just beyond human imagination. Now Kenn, let me challenge
you: I wrote this same sentence about you in another book. Which one? Hey, you have only
a few days to answer as another project is in sight! :)

Many editors say that my written English is more than acceptable for it not being my first
language. Readers don’t actually know much about my (real) English because Roger LeBlanc
has a pass on every thought that I happen to put down in words. I would like a wireless
 version of Roger that could intercept my thoughts at the source and fix them in correct
English right away.

xiv Acknowledgments

I owe you all the usual, but heart-felt, monumental “Thank You” for being so kind, patient,
and accurate. (Don’t worry, Roger will have fixed this too.)

Like millions of other Italian students, I spent many hours of my teenage years trying to
catch the spirit of The Divine Comedy. As you may know, the whole poem develops around
a journey that Dante undertakes through the three realms of the dead, guided by the Roman
poet Virgilio. With due distance, I similarly spent many hours of my past months trying to
catch and express the gist of ASP.NET MVC. I began a journey through controllers, views,
models, and filters, guided by a top-notch developer, trainer, and friend—Hadi Hariri.

At times during the project, I searched for advice on a few specific architectural aspects of
ASP.NET MVC and found that

 1. The number of matching responses was surprisingly low.

 2. And the first significant post reported was from Hadi.

This combination of results happened only a couple of times, but a couple of times is a huge
quantity given the very specific questions I was trying to find out more.

After advocating ReSharper for many years, Hadi now works for JetBrains and reinforced
the strongly positive feeling I always had for the product. Of course, he helped me a lot with
the appendix at the end of the book.

Loyal readers of my books may know about my (insane) passion for tennis. My wife, Silvia,
asked me once, “OK, you like tennis so much, but is there any chance that you can make some
money from it?” I never dared ask whether she meant “make money playing and winning
tournaments” or “make money through software applied to tennis.” To be on the safe side,
I covered both possibilities and decided to train and play a lot more, while spending many
hours helping out Giorgio Garcia and the entire team at Crionet and e-tennis.tv to serve
better services to tennis tournaments and their related fans.

Finally, I must mention my kids, Francesco (12) and Michela (9). In different ways, they seem
to feel comfortable on stage, be it on Wimbledon’s Centre Court with Roger Federer in the
background or in a nice theater in Rome.

Till the next one!

Dino Esposito

 xv

Introduction
Get your facts first, and then you can distort them as much as you please.

—Mark Twain

In the spring of 2006, I had the privilege of taking a very early look at what would eventually
become ASP.NET MVC. Scott Guthrie of Microsoft arranged a personal demo just for me
backstage at the DevConnections conference in balmy Nice, France. At the time, I had just
started playing with ASP.NET Web Forms and the Model-View-Presenter (MVP) pattern.
I expected to see the usual great set of designers to automatically define models, controllers,
and views. Instead, I was surprised to see a brand-new application model being worked out
on top of the same ASP.NET runtime. (Note that what I saw at that time was at best a distant
relative to what you know today as ASP.NET MVC, but the key facts were already visible.)

Not that getting rid of the postback model looked like a bad thing to me, but frankly the
idea of changing the programming model quite significantly didn’t impress me that much.
The combination of ASP.NET Web Forms and MVP seemed to me a more natural and less
 disruptive way to achieve separation of concerns and overall better quality code. Scott
 pointed me to a couple of team members that I pinged a few times during the summer
for more information and newer builds. But nothing happened. Instead, in the summer of
2006 all the excitement being generated was for the upcoming ASP.NET AJAX Extensions
 (remember Atlas?). Overwhelmed by the AJAX bandwagon, I gravitated to this clear
 sentiment: that funky ASP.NET MVC thing was just a proof of concept, a good-for-fun project.
So I removed it from my mind.

In October 2007, I was in Malaga, Spain, to make a presentation to a local user group. During
a break, my friend Hadi Hariri asked my opinion about the just-released, first preview of
ASP.NET MVC.

ASP.NET what?

I had a look at the bits, and a few weeks later I even wrote one of the very first articles about
ASP.NET MVC for the DotNetSlackers Web site. The article is still there (and mostly valid) at
http://www.dotnetslackers.com/articles/aspnet/AnArchitecturalViewOfTheASPNETMVCFramework
.aspx. The taste of ASP.NET MVC was bittersweet for me. Overall, ASP.NET MVC seemed like
an entire step backwards and I couldn’t see the point of it. And I asked the same question so
many times:

When is this going to be really (and tangibly) better than ASP.NET Web Forms?

This is the fundamental question. And it is still largely unanswered, to the point that I suspect
that it can’t really have an answer.

xvi Introduction

Although it’s based on the same runtime environment, ASP.NET MVC is significantly different
from ASP.NET Web Forms. It supports a radically different pattern—MVC (actually the special
flavor of MVC known as Model2) rather than a pure Page Controller—and was designed with
a radically different set of goals—testability, extensibility, and closeness-to-the-metal of both
the Web and ASP.NET runtime.

It doesn’t matter what kind of software professional you are, when it comes to choosing the
platform for a new .NET Web application you feel like you are at a crossroads. You know you
have to choose, and you look around for guidance. You see pros and cons on both sides,
and you can hardly see—clearly and tangibly—what’s the right way to go. For this reason,
the core question—should we use ASP.NET Web Forms or ASP.NET MVC—often ends up
 being an endless and pointless religious discussion where all parties push their own vision
and scream louder with the gathering force of their conviction.

In the end, the correct answer is that it depends. In the end, the choice is really like Microsoft
describes it: car vs. motorcycle or automatic vs. manual.

This leads to a new and largely unspoken question: Did we really need a second option?
Wouldn’t it have been better for us if Microsoft detected the signs of age of Web Forms
and worked as hard as they worked on ASP.NET MVC to improve that, sticking to just one
framework?

Aren’t two options always better than one? Sure, but two options imply a choice. And
a choice implies information, education, and responsibility. Here’s where this book
 hopefully fits in.

ASP.NET MVC and Web Forms
Until late 2008, I was happy enough with Web Forms. I did recognize its weak points and was
able to work around them nicely with discipline and systematic application of design
 principles. In the beginning, ASP.NET MVC was enthusiastically received by a relatively small
segment of the community, but one that was screaming loudly and posting a lot. Even
though I’ve never been a member of the ALT.NET community, I’m still constantly keeping
an eye out for any better ways of doing my tasks. So I started to explore the ASP.NET MVC
 architecture and tried to understand its potential, while constantly trying to envision concrete
business scenarios in which to employ it. I did this for about a year.

What did I learn?

Technically speaking, ASP.NET MVC is far superior to Web Forms. This is because it’s
newer and was designed around an alternate and more modern set of principles and
 patterns. Is this sufficient reason for you to switch to it? In my opinion, it isn’t. ASP.NET
MVC is an excellent choice from the perspective of developers, but that fact alone doesn’t

 Introduction xvii

 automatically translate into a tangible benefit for the customer and the project. Moreover,
ASP.NET MVC is much less forgiving than Web Forms and requires training, or at least
 self-training.

In 10 years of using Web Forms, I’ve seen many professionals with limited programming skills
produce effective Web front ends using data-bound controls and a bit of Microsoft Visual
Basic. This will not happen with ASP.NET MVC. Worse yet, if you start writing ASP.NET MVC
code taking the learn-as-you-go approach that worked for many with Web Forms, you will
surely cook up great examples of much hated spaghetti code.

So learning ASP.NET MVC makes you a better developer, but it has a cost. Who’s supposed
to pay for that? Your customer? Your company? You, yourself? How would you justify to
a project manager the extra training costs for just using ASP.NET MVC? You can try, but the
natural objection is this: “OK, but where’s my return? Can’t we take this project home by
 simply using Web Forms, which we already know through and through?”

In the end, picking ASP.NET MVC over Web Forms is a matter of preference and attitude,
or it’s a matter of dealing with some nonfunctional requirements. In the first case, you don’t
have extra costs because it can be assumed you know your stuff very well. The second case,
instead, introduces the only scenario I can think of where ASP.NET MVC is a clear winner.

How can you fulfill requirements such as strict accessibility, adherence to Web standards,
XHTML, theme-ability, cross-browser experience, and rich AJAX capabilities?

These requirements lead to the necessity of exercising strict control over the markup emitted
for each page. This is an area where ASP.NET MVC is incomparably better than Web Forms,
even when you take into consideration Microsoft’s latest improvements to the ASP.NET 4
framework and your own programming self-discipline.

Every other argument being presented as a plus of ASP.NET MVC—such as testability,
separation of concerns, extensibility, and the like—is just a plus of the framework, not
a breakthrough for the project. By the way, even though in the .NET space we seem to have
discovered testability only a few years ago, it has been listed as a fundamental attribute of
software in the ISO/IEC 9126 paper since 1991. (For more information, have a look at
http://en.wikipedia.org/wiki/ISO_9126.)

Who Is This Book For?
As explained in great detail in Chapter 1, “Goal of ASP.NET MVC and Motivation for Its
Development,” ASP.NET Web Forms is showing the signs of age. And ASP.NET MVC is an
 excellent (although still incomplete) replacement. My guess—my humble, two-cent guess—is
that in a couple of years (and in a couple of versions) ASP.NET MVC will offer the same level
of productivity as Web Forms—either because of framework enhancements or because of

Boykma
Text Box
Download from Wow! ebook <www.wowebook.com>

xviii Introduction

even more powerful tooling. At that point, you will have two options that are equivalent
functionally and in terms of productivity. But one of them (ASP.NET MVC) can help you write
better code, faster. This may not be the case today with ASP.NET MVC 2, but it likely will be
the case with ASP.NET MVC 3 or 4.

I don’t think that ASP.NET Web Forms will be dismissed very soon. For example, rumors
 suggest that ASP.NET Web Forms will move decidedly toward increasing testability in
 version 5 through the introduction of some MVP support. We’ll see, but as I see things
ASP.NET MVC is and will remain far superior technically.

Although pushing a team to use ASP.NET MVC today on a project might be an arguable
choice, pushing it within a software company isn’t an arguable choice at all. Having a deep
 understanding of ASP.NET MVC makes you a better developer. ASP.NET MVC is easy to pick up
for junior developers who are just out of school, even though it could be harder for experienced
Web Forms developers to learn. This book assumes you have knowledge of Web Forms
 programming as it explains how ASP.NET MVC works and how to use it effectively.

My experience shows that too many Web Forms developers built their expertise by trial
and error. ASP.NET MVC requires a sort of reset, and you know that after you reboot your
 machine it normally runs faster. But this personal reboot may take a bit of effort. Start
 today with ASP.NET MVC, even in parallel with current Web Forms projects. You’ll see the
 difference, understand the basic facts of Web development, and soon be ready for writing
better code with both Web Forms and ASP.NET MVC.

Companion Content
This book features a companion Web site that makes available to you all the code used in the
book. This code is organized by chapter, and you can download it from the companion site at
this address: http://go.microsoft.com/fwlink/?LinkId=189142.

Hardware and Software Requirements
You’ll need the following hardware and software to work with the companion content
 included with this book:

n Microsoft Windows Vista Home Premium Edition, Windows Vista Business Edition,
or Windows Vista Ultimate Edition, Microsoft Windows 7 Home Premium Edition,
Windows 7 Business Edition, or Windows 7 Ultimate Edition, Windows Server 2008, SP1.

n Microsoft Visual Studio 2008 Standard Edition, Visual Studio 2008 Enterprise Edition,
or Microsoft Visual C# 2008 Express Edition and Microsoft Visual Web Developer 2008
Express Edition, Visual Studio 2010 Professional Edition, Visual Studio 2010 Premium
Edition, Visual Studio 2010 Ultimate Edition.

 Introduction xix

n Microsoft SQL Server 2008 Express Edition, Service Pack 1.

n 1.6 GHz Pentium III+ processor, or faster.

n 1 GB of available, physical RAM.

n Video (800 × 600 or higher resolution) monitor with at least 256 colors.

n CD-ROM or DVD-ROM drive.

n Microsoft mouse or compatible pointing device.

Support for This Book
Every effort has been made to ensure the accuracy of this book. As corrections or
 changes are collected, they will be added to a Microsoft Knowledge Base article accessible
via the Microsoft Help and Support site. Microsoft Press provides support for books,
 including instructions for finding Knowledge Base articles, at the following Web site:
http://www.microsoft.com/learning/support/books/.

If you have questions regarding the book that are not answered by visiting the site
above or viewing a Knowledge Base article, send them to Microsoft Press via e-mail to
mspinput@microsoft.com.

Please note that Microsoft software product support is not offered through these addresses.

We Want to Hear from You
We welcome your feedback about this book. Please share your comments and ideas via the
following short survey: http://www.microsoft.com/learning/booksurvey

Your participation will help Microsoft Press create books that better meet your needs
and your standards.

Note We hope that you will give us detailed feedback via our survey. If you have questions
about our publishing program, upcoming titles, or Microsoft Press in general, we encourage you
to interact with us via Twitter at http://twitter.com/MicrosoftPress. For support issues, use only
the e-mail address shown above.

 1

Part I

The Programming Paradigm

 3

Chapter 1

Goals of ASP.NET MVC and
Motivation for Its Development

You affect the world by what you browse.

—Tim Berners-Lee

The open era of the World Wide Web (WWW) began on April 30, 1993. That day, the
European Organization for Nuclear Research (CERN, from the French original name of Conseil
Européen pour la Recherche Nucléaire) announced publicly that the World Wide Web would
be free for anyone to browse and build within.

As a Web professional, you should keep this date in mind, carefully track it in your calendar
and, perhaps, celebrate it regularly with friends and family. It is a significant day in history.
After all, it’s the date on which your profession was officially born. Without this date in
 history, you might have found yourself a car mechanic or store salesperson!

As Tim Berners-Lee—the inventor of the World Wide Web—noted once, the development of
the Web was very quick compared to other media and mass devices such as the telephone
or TV. A number of ancillary factors contributed to the rapid growth of the WWW. One
was certainly the decision, adopted only a few weeks before the CERN announcement,
by the University of Minnesota to charge a fee for use of its Gopher server. At the time,
Gopher—a TCP/IP layer for retrieving documents over the Internet—was an even better
 established and more credible alternative to the World Wide Web. The fee announced by the
University of Minnesota was only for the use of one particular server, but people saw in it the
threat of an incoming charge to be imposed on any Gopher server worldwide.

That’s just one example of an early catalyst to the growth of the WWW. You’ve lived and
 personally experienced the rest of the story.

By the end of the 1990s, Gopher was in full stagnation while the WWW was expanding and,
among other things, fueling the notorious Internet bubble. (If you’re curious about Gopher,
you can dig further into the topic by visiting the reference on Wikipedia at the following
 address: http://en.wikipedia.org/wiki/Gopher_(protocol).)

The first significant Web sites and applications appeared shortly after CERN waived any
 copyrights on the WWW. In general terms, a Web application is a kind of client/server
 application that consists of a set of individually addressable pages. Pages form the user

4 Part I The Programming Paradigm

 interface of the application and are accessed via a general-purpose client application—the
Web browser. Pages work over the network whether it is the Internet or an intranet.

What is a Web page? How is a Web page coded?

The answers to these questions are precisely what this book covers from the perspective
of ASP.NET MVC, which is a framework for building Web applications using the Microsoft
ASP.NET platform. ASP.NET MVC (for Model View Controller) marks a significant change in
how developers code Web pages within the ASP.NET platform.

Abstractly speaking, a Web page can be seen as a dual container where a public interface is
backed by a number of technologies on a variety of hardware/software platforms. Publicly,
a Web page produces a standard markup mix made of HTML, cascading style sheets (CSS),
and JavaScript that Web browsers know how to render. Internally, a Web page can employ
a number of technologies, frameworks, languages, and patterns to process a Web request to
an acceptable markup mix.

Microsoft scored a remarkable victory in the Web industry with the introduction of the
ASP.NET platform back in 2001. ASP.NET opened the doors of Web development to a huge
 number of professionals and contributed to changing the development model of Web
 applications. ASP.NET wasn’t alone in producing this effort. ASP.NET followed up the progress
made by at least a couple of earlier technologies: classic Active Server Pages (ASP) and Java
Server Pages (JSP).

In its early years, the Web pushed an unusual programming model and a set of programming
tools and languages that were unknown or unfamiliar to the majority of programmers. Anybody
who tried to build even a trivial Web site in the 1990s had to come to grips with the HTML
 syntax and at least the simplest JavaScript commands and objects. The public interface of Web
pages—the aforementioned markup mix—had to be written manually in the past decade.
And this created a sort of trench separating die-hard C/C++ programmers from freaky Web
developers.

Whereas classic ASP introduced the concept of dynamic content generation and laid the
groundwork for rapid application development (RAD) tools, JSP explored a more structured
approach to Web development based on the reassessment of some popular (and effective)
design patterns.

Classic ASP was a blast to work with because developers really liked the idea of designing
Web pages as HTML-based templates interspersed with some code blocks to be interpreted
and executed at run time and generating dynamic content on the fly. However, there’s
a strong, underlying assumption in this model.

 Chapter 1 Goals of ASP.NET MVC and Motivation for Its Development 5

Any Web requests that come along are processed to generate an HTML page. All server
 efforts to process the request are aimed at getting an HTML page, from the opening
<html> tag to the closing </html> tag. Any code and processing required along the way
are overshadowed by the necessity of producing detailed HTML. The link between the Web
 request and some server-side operation is surely not lost, but it doesn’t always show up
clearly at the developer level.

For years, this remained the major difference between classic ASP (and, later, ASP.NET) and
JSP. This gap is covered today with the release of an alternative programming model for the
ASP.NET platform. Welcome, ASP.NET MVC!

Note You might have noticed that I didn’t mention Personal Home Page (PHP) language when
I listed some of the technologies that influenced Web development models. When it comes to
Web development technologies, PHP can’t just be ignored.

According to Netcraft’s January 2010 Web server survey (which you can find at http://news
.netcraft.com/archives/2010/01/07/january_2010_web_server_survey.html), Apache is firmly the
 market leader serving around 50 percent of monitored sites. And because Apache is part of
the open-source LAMP (Linux + Apache + MySQL + PHP) stack—with Linux as the operating
 system, Apache as the Web server, MySQL as the database server, and PHP (or Python or Perl)
as the programming language—you can easily conclude that PHP is an extremely popular Web
 development framework. PHP and ASP.NET together have the lion’s share of the development
market.

However, PHP and ASP.NET developed along independent paths and thus have quite different
characteristics. ASP.NET was devised to be the successor of classic ASP; in the newer flavor of
ASP.NET MVC, some of the ideas originally developed for JSP have been reworked. That’s why
you didn’t find PHP mentioned earlier.

The Deep Impact of ASP.NET
Classic ASP had two main merits. First, it made dynamic HTML generation really easy for
many developers. Second, it was one of the first programming environments to host the logic
of Web applications within the Web server with a subsequent marked performance gain.

Based on script code and interpreted by a runtime engine, ASP pages were upgraded to the
rank of compiled code with the advent of the .NET platform. Totally superseded by ASP.NET,
classic ASP is today a dead end and survives only in legacy Web sites.

ASP.NET pages are based on compiled code written using first-class programming languages
such as Microsoft C# and Visual Basic. What was easy and effective to do with classic ASP
turned out to be even easier and smoother with ASP.NET.

6 Part I The Programming Paradigm

Productivity Is King
The advent of ASP.NET represented a turning point for the Web industry as a whole. ASP.NET
was built on top of classic ASP and added a lot of new features. The quest for productivity
was the primary driving force behind the innovations introduced with ASP.NET.

The Fast-Growing Web Industry
Scott Guthrie of Microsoft notes in an interview on MSDN’s Channel 9 that in the late 1990s
his team was called to devise the next generation of Web applications. That happened at
the time when classic ASP, COM, and Microsoft Transaction Server (MTS) represented the
cutting edge of Web and multitier applications. The team started gathering feedback from
customers writing real-world Web applications and quickly learned that there was a heck of
a lot to do to make their task easier and quicker.

The feature set of classic ASP was too small for scaling up the technology. In addition, there
was a strong demand for rapid application development (RAD) and administration tools
capable of speeding up all tasks that usually accompany the building of an application—
deployment, back-office tasks, visual feedback.

Note You can find the full transcript of Scott Guthrie’s Channel 9 interview at http://channel9
.msdn.com/shows/ARCast+with+Ron+Jacobs/ARCast-Scott-Guthrie-the-man-the-myth-the-
legend. Currently Microsoft Corporate VP of the .NET Developer Platform, Scott was a member of
the team that originally devised and built ASP.NET.

ASP.NET was devised in the late 1990s at a time when many companies in various
 industry sectors were rapidly discovering the new media called the Internet. For companies,
the Internet was a real breakthrough, making possible innovations in software
 infrastructure, marketing, distribution, and communications that were impractical or
 impossible before.

A ton of old-fashioned, mainframe-based enterprise applications were redesigned around
a Web-based front-end topping a bunch of .NET-based tiers. In addition, the advent
of e-commerce, intranets, portals, and new publishing opportunities pushed growth
in industries based specifically on the Web at an incredible pace. A fast-growing Web
 industry spurred rapid growth in the number of Web sites. And this was possible only with
 robust and reliable Web development technologies that could generate unprecedented
productivity.

ASP.NET was the right technology at the right time.

Adapting the RAD Model to the Web
Before ASP.NET was developed, in Microsoft’s space the RAD, event-driven model of Visual
Basic was the best (and most envied) practice. Visual Basic made it quick and easy to

 Chapter 1 Goals of ASP.NET MVC and Motivation for Its Development 7

 prototype an application driven by the needs of the user interface. So you could start by
 putting a few buttons on a form, double-click on them to have a stub of code added, and
then edit that code with some database commands.

Results could be tested in a matter of seconds, and users could share feedback on graphics
pretty soon afterward. In a word, development became inherently more agile; the attention
to detailed blueprints inevitably decreased.

The RAD model was created for smart-client desktop applications. The challenge for the
ASP.NET team was figuring out how to expand the RAD model to the Web.

The original Visual Basic RAD model evolved into the Windows Forms model with the
introduction of the Microsoft .NET Framework. With the Windows Forms model, no matter
what connectivity exists between the client and server components, the server always works
in reaction to the client’s input. The server is aware of the overall application state and
operates in a two-tier, connected manner. This model was easy to implement in a smart-client
scenario, but it required some extra machinery to get it to work over the Web. Figure 1-1
compares the smart-client Windows Forms model with ASP.NET’s Web Forms model.

Windows Forms

Form
reaction

Network/Local

action

response

HTTP

request

Web Forms

Client Server

ASPXSerialize
current state

Deserialize
previous state

Code

http://—IE

FIGuRE 1-1 Comparing the Windows Forms and Web Forms models

Because the Web is based on a stateless protocol, implementing an event model over the
Web requires any data related to the client-side user’s activity to be forwarded to the server
for corresponding and stateful processing. The server processes the output of client actions
and triggers reactions.

8 Part I The Programming Paradigm

The state of the application contains two types of information: the state of the client and the
state of the session. The needed machinery is represented by the state deserialization that
occurs when the Web page is requested, and the state serialization is performed when the
HTML response is being generated.

Note I can’t emphasize enough the importance of understanding the concepts involved with
stateless programming when developing Web applications. As mentioned, HTTP is a stateless
 protocol, which means two successive requests across the same session have no knowledge of
each other. On the server side, they are resolved by newly instantiated environments in which
no session-specific information is automatically maintained, except all the information the
 application itself might have stored in some of its own global objects.

The ASP.NET runtime carries the page state back and forth across page requests. When generating
HTML code for a given page, ASP.NET encodes and stuffs the state of server-side objects into
a few hidden, and transparently created, fields. When the page is requested, the same ASP.NET
 runtime engine checks for embedded state information—the hidden fields—and uses any decoded
 information to set up newly created instances of server-side objects. The net effect of such a
 mechanism is not unlike the Windows Forms model on the desktop and is summarized in Figure 1-1.

Engineering Current Best Practices
In addition to re-creating an overall environment similar to a desktop’s Windows Forms
 model, the ASP.NET team managed to select a number of ASP best development practices
and engineered them into the new ASP.NET framework and runtime environment. Let’s
 briefly review a few examples.

To start off, it was common for ASP developers to place a common bunch of code on top of
every page that had to be protected from unauthorized access. Typically, such code checked
the content of an aptly named cookie on the user’s machine and used that information as the
credentials. ASP.NET doesn’t require you to include this code on top of the page; instead, you
configure a runtime module that runs before every page request and does the same thing
for you.

In classic ASP, the content of HTML input fields in a form was often bound to posted values,
as shown here:

<input name="TextBox1" type="text" value='<% Request.Form["TextBox1"] %>' />

In this way, the input field retains the value the user typed in case the form posts to itself.
This is a useful practice to show input values that failed validation or to arrange a wizard-
like input process. In ASP.NET, every page is allowed to have just one all-encompassing
HTML form, and the runtime machinery automatically restores the posted values on the
 input fields.

In classic ASP, every page is a sort of HTML template with some placeholders here and there
for dynamically generated markup. In ASP.NET, such placeholders are engineered into server

 Chapter 1 Goals of ASP.NET MVC and Motivation for Its Development 9

controls, which are configurable and programmable blocks of server code that, as a result,
produce well-formed and data-bound HTML markup.

Finally, in ASP.NET the page HTML template is abstracted to a page class, thus creating the
conditions to set up hierarchies of pages in homage to object-oriented programming best
practices.

In the final analysis, some of the main traits of the ASP.NET platform result from
 engineering popular ASP best practices. The resulting programming model is known as Web
Forms.

A deeper look at the Web Forms model is useful to gain an understanding of its current-day
limitations and, subsequently, the need for an alternative model such as ASP.NET MVC.

The Web Forms Model
The best-selling point of ASP.NET is that it opens the world of Web programming to many
developers with limited or no skills at all in HTML and JavaScript. Because of its abstraction
layer over HTTP and HTML, ASP.NET attracted Visual Basic, Delphi, C/C++, and even Java
programmers.

For years, in fact, programming the Web meant developing a completely different skill set.
ASP.NET, instead, combined the productivity of a visual and RAD environment backed by
powerful tools with a component-based programming model.

Nicely enough, the ASP.NET programming model could be approached effectively from
both perspectives. It was the next step for both freaky HTML/JavaScript professionals and for
 die-hard C++ professionals.

With that introduction in mind, let’s now begin to look at what makes Web Forms tick. There
are three pillars to the Web Forms model: page postbacks, view state, and server controls.

Page Postbacks
An ASP.NET page is based on a single form component that contains all of the input
 elements the user can interact with. The form can also contain submission elements such
as buttons or links.

A form submission sends the content of the current form to a server URL—by default,
the same URL of the current page. This is known as the postback. In ASP.NET, the page
 submits any content of its unique form to itself. In other words, the page is a constituent
block of the application and contains both a visual interface and some logic to process user
gestures.

The similarity between the ASP.NET page and a Windows form is readily apparent. Another
aspect, though, is much less obvious.

10 Part I The Programming Paradigm

Suppose the user clicks on a button hosted in a page that is displayed within the client browser.
The click instructs the browser to request a new instance of the same page from the Web
server. In doing so, the browser also uploads any content available in the (single) page’s form.
On the server, the ASP.NET runtime engine processes the request and ends up executing some
code. The following code shows the link between the button component and the handler code
to run:

<asp:Button runat="server" ID="Button1" OnClick="Button1_Click" />

The running code is the server-side handler of the original client-side event. From within the
handler, the developer can update the user interface by modifying the state of the server
controls, as shown next:

public void Button1_Click(object sender, EventArgs args)

{

 // Sets the label to display the content of the text box

 Label1.Text = "The textbox contains: " + TextBox1.Text;

}

At the time the handler code runs, any server controls on the page have been updated to
hold exactly the state they had during the last request to the page, plus any modifications
resulting from posted data. Such stateful behavior is largely expected in a desktop scenario;
in ASP.NET, however, it requires the magic of page postbacks.

That Controversial Big Thing Named View State
The view state is a dictionary that ASP.NET pages use to persist the state of their child
 controls across two consecutive postbacks. The view state plays an essential role in the
 implementation of the postback model. No statefulness would be possible in ASP.NET
 without the view state.

To summarize: The view state is the result of engineering a common solution in classic ASP
pages. In classic ASP, developers frequently used hidden fields to track critical values across
two successive requests. This was necessary when multiple HTML forms were used in the
page. Posting from one would, in fact, reset any values in the fields within the other. To make
up for this behavior, the values to track were stored in a hidden field and employed to
 programmatically initialize fields during the rendering of the page.

The view state is just an engineered and extended version of this common trick. The view
state is a unique (and encoded) hidden field that stores a dictionary of values for all controls
in the (unique) form of an ASP.NET page.

By default, each page control saves its entire state—all of its property values—to the view
state. In an average-sized page, the view state takes up a few dozen KBs of extra data. This
data is downloaded to the client and uploaded to the server with every request for the page.
However, it is never used (and should not be used) on the client.

 Chapter 1 Goals of ASP.NET MVC and Motivation for Its Development 11

Because of its size, and also because of its not-so-obvious role, the view state is often
 considered to be just a huge weight on the shoulders of an ASP.NET page, or just a smart
way to waste some bandwidth.

It is definitely possible to write pages that minimize the use of the view state for a shorter
download, but the view state remains a fundamental piece of the ASP.NET Web Forms
 architecture. To eliminate the view state from ASP.NET, a significant redesign of the platform
would be required.

Note The view state’s bad reputation is more a result of the default way of (ab)using it than any
effective architectural limitations. Very few controls in very few scenarios really require the use
of the view state but it’s way too alluring to just stuff things into the view state that shouldn’t
be there, such as complex object graphs. The view state is delicate, and minor code changes
 sometimes result in a much larger view state if you don’t know exactly what you’re doing.

The most effective approach is to disable it for all controls that don’t need it. This can be done
programmatically through the EnableViewState property or, better yet, in ASP.NET 4 via the new
ViewStateMode property.

Server Controls
Server controls are central to the ASP.NET Web Forms model. The output of an ASP.NET page is
defined using a mix of HTML literals and markup for ASP.NET server controls. A server control
is a component with a public interface that can be configured using markup tags, child tags,
and attributes. Each server control is characterized by a unique ID and is fully identified by that.

In the ASP.NET page markup, the difference between a server control and a plain HTML
literal string is the presence of the runat attribute. Anything in the source devoid of the
runat attribute is treated as literal HTML and is emitted to the output response stream as is.
Anything else flagged with the runat attribute is identified as a server control. An instance of
the corresponding server control class is created to process the content in the markup. The
control, in turn, is responsible for emitting proper HTML for the output stream.

Server controls shield developers from the actual generation of HTML and JavaScript code.
Programming a server control is as easy as setting properties on a reusable component.
When processed, though, the server control emits HTML. In the end, programming server
controls is a way of writing HTML markup without knowing much (if any) of its unique syntax
and feature set.

The “Page Controller” Pattern
In an ASP.NET page, any user action (such as clicking or changing the current selection)
 originates a postback. The output of any postback is a new HTML string that the browser

12 Part I The Programming Paradigm

 replaces on the currently displayed page. The HTML string is generated based on the markup
found in the source code of the requested ASP.NET page.

Ultimately, a postback is a client request for some server action. For an ASP.NET developer,
handling the postback is a matter of writing a method in the class that represents the page.
For the Web server, handling the postback is a matter of serving an incoming HTTP request.

The Web server serves an ASP.NET request by dispatching it to the ASP.NET runtime engine.
Internally, the request is resolved by finding a special component named the HTTP handler.
The HTTP handler gets input from the HTTP packet, performs some tasks, and prepares
a return HTTP packet.

A Web programming model is all about how an incoming request is resolved. The ASP.NET
Web Forms model resolves an incoming request by dispatching the request to an HTTP
 handler component. According to the ASP.NET Web Forms model, the HTTP handler is
 expected to return HTML for the browser.

As we’ll see later in this chapter, and in the remainder of the book, an alternate model such
as ASP.NET MVC can take a different approach.

The HTTP Handler
An HTTP handler component is an instance of a class that implements the IHttpHandler
 interface. This component is a pillar of the ASP.NET runtime architecture. Here’s the definition
of the interface:

public interface IHttpHandler

{

 public void ProcessRequest(HttpContext context);

 public bool IsReusable;

}

The name of the method ProcessRequest says it all about the intended semantics. It takes
the context of the request as the input and ensures that the request is serviced. In the case
of synchronous handlers, when ProcessRequest returns, the output is ready for forwarding
to the client. (It is not of primary importance here, but HTTP handlers can also work
 asynchronously according to the methods in the IHttpAsyncHandler interface.)

In Visual Studio, you build an ASP.NET application as a collection of Web Forms pages. Each
page consists of two files: an .aspx markup file describing the expected HTML template and
a C# (or Visual Basic) class file that contains postback handlers and any ancillary methods.

Where’s the HTTP handler, then? Who writes the HTTP handler for each and every ASP.NET
request that originates within an application? Is the Web Forms model really centered on the
concept of an HTTP handler?

 Chapter 1 Goals of ASP.NET MVC and Motivation for Its Development 13

The answer is in the underlying design pattern used to implement the Web Forms model.
Known as Page Controller, the pattern suggests that you arrange the processing of an HTTP
request around the concept of the page. Processing the request is a task that goes through
a number of steps, such as instantiating the page, initializing the page, restoring the page’s
state, updating the page, rendering the page, and unloading the page.

In the implementation of the pattern, you start from a base page class and define a strategy
to process the request—the page life cycle. In the implementation of the page life cycle,
you come up with an interface of virtual methods and events that derived pages will have
to override and handle. Derived page classes are known as code-behind classes in ASP.NET
jargon.

In ASP.NET, the base page class is System.Web.UI.Page and, guess what, most of what it does
is implement the IHttpHandler interface. (See Figure 1-2.)

IHttpHandler

void ProcessRequest

{

}

Life cycle

Init

{

}

Load Postback PreRender Unload

System.Web.UI.Page

Your code-behind class

Implementation

public_Default : System.Web.UI.Page

FIGuRE 1-2 The Page Controller pattern in ASP.NET Web Forms

14 Part I The Programming Paradigm

The Code-Behind Class
The underlying page controller class—the System.Web.UI.Page class—implements the
IHttpHandler interface and provides the glue code invoked by the ASP.NET runtime to
start the processing. As a page developer, you are not required to implement IHttpHandler
yourself and you do not participate actively in the processing of the request. All you do is
handle some public events and, at most, override some protected virtual methods that are
left there so that you can customize some steps of the overall request life cycle. The Page
Controller pattern is about centralizing the process and yielding to user code only at specific
stages and sharing specific pieces of information.

ASP.NET developers are allowed to do only a couple of things: describe the user interface they
want via HTML literals and ASP.NET markup, and express the desired behavior via specific life
cycle events and overridable processing methods exposed through the Page class.

Events are well-known page events such as Init, Load, PreRender, and Unload. Overridable page
methods are LoadViewState and SaveViewState. Further customization is possible through
overrides on specific controls, such as those allowed by methods on the IPostBackDataHandler
and IPostBackEventHandler interfaces.

Any customization is possible only in the code-behind class of a page. The code-behind class
is a user-specific class that is required to inherit from the root page controller class. Here’s
the typical structure of a user-defined page class:

public class _Default : System.Web.UI.Page

{

 public void Page_Load(object sender, System.EventArgs e)

 {

 // Predefined handler for Load event

.
 .
 .

 }

.
 .
 .

}

The code-behind class contains only the behavior of the page. What about the list of
child controls to be instantiated for the page in order to build the desired user interface?

The actual list of child controls and visual elements for the page is stored in the .aspx
 markup file. The ASP.NET runtime doesn’t actually instantiate the code-behind class to
 process the request. Instead, it looks for a class built from the .aspx markup that knows
both about the child controls and the expected behavior. This helper class is not written by
 developers; it is created by the runtime environment the first time the page is requested in
the application.

Such a dynamically created class inherits from the code-behind class (thus grabbing the
desired behavior), and all it does in the constructor is parse the associated markup file for
runat-flagged elements and populate the Controls collection of the parent Page class with
instances of server controls.

 Chapter 1 Goals of ASP.NET MVC and Motivation for Its Development 15

Note A detailed explanation of the ASP.NET page life cycle can be found in Chapter 3 of my
 previous ASP.NET book, Programming ASP.NET 3.5 (Microsoft Press, 2008). However, what’s
 important here is to note that Web Forms page processing is fairly rigid and difficult to customize
to any great extent. From a Web programmer’s point of view, the significant portions of the HTML
processing are abstracted into pages and server controls that you manipulate at an object level
rather than at an HTML level.

Page Hierarchies
The Page Controller pattern builds a small hierarchy of classes in which the code-behind class
derives from the page controller class and then the dynamically generated page class, in
turn, inherits from the code-behind class. (See Figure 1-3.)

Runtime
Dynamically created page class

(ASP.filename–aspx)

Code-behind class
(YourApp.YourPage)

Custom hierarchy of controller class
(YourApp.YourController)

Page controller class
(System.Web.UI.Page)Framework

Application
(mandatory)

Application
(optional)

FIGuRE 1-3 The hierarchy of ASP.NET pages. The word “controller” here is related
to the Page Controller pattern and should not be interpreted in the MVC sense.

Developers can extend the hierarchy shown in the figure at will. Especially in large
 applications, it can be useful to create intermediate page classes to model complex views and
to fulfill sophisticated navigation rules.

Building a custom hierarchy of page classes means placing custom classes in between the page
controller and the actual code-behind class. The ultimate reason for having a custom page
hierarchy is to customize the page controller, with the purpose of exposing a tailor-made life
cycle to developers. An intermediate class, in fact, will incorporate portions of common
 application behavior and expose specific new events and overridable methods to developers.

16 Part I The Programming Paradigm

The ASP.NET Age of Reason
So ASP.NET was a success and, more importantly, it has been adopted for nearly any new
Web project that has been started in the past six or seven years when targeting the Microsoft
platform. Today, ASP.NET is unanimously considered a stable, mature, and highly productive
platform for Web development.

Five years of a software technology constitute a huge amount of time, however. Any software
technology inevitably shows the first signs of age after that amount of time. ASP.NET is no
exception.

Microsoft significantly improved and refined ASP.NET along the way. Today ASP.NET includes
a number of extensibility points that weren’t part of it in the beginning. Today, ASP.NET
 offers a rich platform for AJAX development, and built-in controls have been adapted to
 better support CSS and XHTML requirements.

Is ASP.NET still an excellent option for companies developing Web applications? Is the Web
Forms model the best model possible? Should we look around for an alternative approach?

ASP.NET’s Signs of Aging
The primary goal of ASP.NET was to enable developers to build applications quickly and
 effectively without having to deal with low-level details such as HTTP, HTML, and JavaScript
intricacies. That was what the community loudly demanded in the late 1990s. And ASP.NET
is what Microsoft delivered, exceeding expectations by a large extent.

But people’s requirements change over time.

As more and more companies upgrade existing sites to ASP.NET, or port corporate
 applications to the Web, the complexity of the average Web application grows. After five
years, expectations have probably passed the critical threshold that makes the Web Forms
model not necessarily the best option.

Productivity is a great thing, but not if it forces you to sacrifice some other aspects of a good
model, such as maintainability, readability, design, testability, and control of HTML. For a long
time, the trade-off was beneficial. Today, more and more people are pointing out less-than-
optimal aspects of the ASP.NET Web Forms model.

What are the new features the community of developers is loudly demanding for ASP.NET?
What would be good to redesign in ASP.NET? Three main aspects are considered insufficient
today: the average application of the separation of concerns (SoC) principle, testability, and
control over HTML.

 Chapter 1 Goals of ASP.NET MVC and Motivation for Its Development 17

Limited SoC
High cohesion and low coupling are the two pillars of a neat software design. A neater software
design increases maintainability and readability of code and helps you deal with complexity.

This said, you should also consider that a neat design is always desirable but is not always
an absolute necessity. If you’re only arranging a few pages to put some pictures online, or
if you’re taking care of a friend’s personal site, you probably don’t want to invest too much
time carefully designing code-behind pages.

SoC is a general principle that, properly applied, is helpful in achieving high cohesion and
low coupling in your software design. SoC was introduced back in 1974 by Edsger W. Dijkstra
in the paper, “On the Role of Scientific Thought.” If you’re interested, you can download the
full paper from http://www.cs.utexas.edu/users/EWD/ewd04xx/EWD447.PDF.

SoC is all about breaking the system into distinct and possibly nonoverlapping features. Each
feature you want in the system represents a concern and an aspect of the system. Terms such
as feature, concern, and aspect are generally considered synonyms. Concerns are mapped to
software modules (that is, classes) and, to the extent that it is possible, there’s no duplication
of functionalities.

SoC suggests that you focus on one particular concern at a time. It doesn’t mean, of course,
that you ignore all other concerns of the system. More simply, after you’ve assigned a
 concern to a software module, you focus on building that module. And from the perspective
of that module, any other concerns are irrelevant.

How much SoC can you get out of ASP.NET?

ASP.NET made the Web really simple to work with and every developer a lot more
 productive. To achieve this result, ASP.NET was designed around the concept of Web Forms; and
Web Forms are UI focused. All you do is author pages and the code that runs behind the page.
The page gets input; the page posts back; the page determines the output for the browser. The
model leads you to perceive any request simply as a way to generate HTML. The code required
to obtain that HTML executes in the background and abstracts HTML production.

It would be terribly incorrect to say that ASP.NET doesn’t support or allow SoC. At the same
time, it is safe to say that ASP.NET was not designed to lead adopters to apply best-design
practices. In the end, ASP.NET certainly doesn’t prevent SoC, but the application of any good
design practices is entirely on the developers’ shoulders. Conversely, the Web Forms model
and available RAD tools make it particularly seductive to create page code that just works.
Within Visual Studio, you can quickly drag a control from the toolbox onto the form, edit
content, and have some stub code generated for you to extend with database commands
and any required logic. More advanced design patterns such as Model-View-Presenter (MVP)
are certainly neither prohibited nor blasphemous, but for one reason or another very few
developers apply it.

18 Part I The Programming Paradigm

Note Best intentions don’t always go hand in hand with the realities of schedules and budgets.
Applying good design practices to ASP.NET Web Forms requires you to break the existing cycle
a bit and provide your own framework. Often, though, it turns out to be too much work. “We’ll
fix it later” is the mantra. “Just get it working now” is what we’re told by stakeholders more often
than not.

Limited Testability
In software, testability is defined as the ease of performing testing. Testing, in turn, is the
process of checking software to ensure that it behaves as expected, contains no errors,
and satisfies its requirements. A software test verifies that a component returns the correct
 output in response to given input and a given internal state. Having control over the input
and the state and being able to observe the output is therefore essential for a successful and
reliable test. If you could even automate the process to a tailor-made application, that would
be ideal. This is exactly what unit testing is all about.

What about the testability of ASP.NET Web Forms applications?

First and foremost, ASP.NET doesn’t prevent unit testing and thus is an inherently testable
platform. The point is, how much and how easy?

Because an ASP.NET Web Forms application is based on pages, to test such an application
you should arrange ad hoc HTTP requests to be sent to each page. And next you should
 observe the response and ensure that it matches your expectations. But the output of a
page is HTML—that is, a potentially long string and having multiple possible equally valid
 representations. In addition, to test an ASP.NET page you need to spin up all of the ASP.NET
runtime. Testing is not easy in these conditions.

A testable page has an internal architecture that deeply applies SoC and lives in a runtime
environment that allows mimicking some of its components for testing purposes. This is
 doable but not facilitated in ASP.NET Web Forms. For this reason, many developers end up
testing their sites by simply poking around.

Note A couple of popular antipatterns relate to testing practices. One is the Test-By-Release
antipattern. It refers to releasing a software product without paying much attention to
 time-consuming chores such as unit and integration testing. Because users are the final recipients
of the product, the pattern consists of leaving them the last word on whether the software
works or not. Another testing antipattern is Test-By-Poking-Around. It consists of taking a tour
around the feature set of the product and tracking and fixing any errors or misbehaviors that
show up along the way. At a minimum, these (common) antipatterns are based on nonrepeatable
 sequences, which makes it hard to catch regression failures.

 Chapter 1 Goals of ASP.NET MVC and Motivation for Its Development 19

Limited Control over HTML
ASP.NET pages produce their HTML via server controls or perhaps via static HTML literals.
Server controls have been one of the main reasons for the success and rapid adoption of
ASP.NET. A server control is a black-box component that, when declaratively or
 programmatically configured, ends up outputting HTML and JavaScript for the browser.

In the beginning of the ASP.NET era, this black-box nature was the best-selling point of server
controls. Things change, however. Today, more and more Web developers demand increasing
control over the HTML markup the page serves to the browser.

Can the markup of server controls be adjusted to some extent? Can the final markup be
 generated from other sources, such as XAML or XSLT?

The developer can hardly control the markup emitted by a server control. The set of public
configurable properties leaves you the final word on some aspects of the resulting markup.
You can’t intervene, however, on the underlying HTML template. A few years ago, Microsoft
released a free toolkit to enable a few built-in controls to output CSS-friendly markup where,
for example, the <table> tag is not used or used much less and in accordance with XHTML
rules. The CSS Control Adapter Toolkit is based on the ASP.NET control adapter architecture,
meaning that you can still use the same approach to make the list of supported controls
 longer or edit the way in which existing controls render themselves through CSS. For more
information about the control adapter logic and internal architecture, pay a visit to
http://www.asp.net/CSSAdapters/WhitePaper.aspx.

This kind of control over the HTML generated by server controls is a good thing to have, but
it is not sufficient to always give developers all the freedom they may need. At the end of the
day, to build a rich and highly interactive interface with multibrowser support, accessibility,
script, and styles, you need to control every single HTML element.

In ASP.NET, you have no alternatives other than using server controls or perhaps static HTML.
The generation of the user’s view is strictly intertwined with the request processing. As you
proceed with the logic, you configure server controls and, at the end of the processing, you
build the HTML page. Processing and HTML generation are not distinct steps. Using server
controls makes it quick and effective. Not using server controls is certainly possible, but it
requires you to build your own framework to move data from processing components to the
view. ASP.NET Web Forms is just not optimized for this scenario.

Alternative Models Grow Up
Over the years, alternative ASP.NET models have been developed to do more effective
ASP.NET development. The most popular is certainly MonoRail. (For more details, check out
http://www.castleproject.org/monorail.)

20 Part I The Programming Paradigm

MonoRail is a variation of the classic Web Forms model; it has you build the page user
interface and logic in terms of controllers and views. The output being generated by a page
is the view and is made of plain HTML. The view is taken care of by an ad hoc engine. The
engine gets a source template and input data, and it produces HTML. The view engine is part
of the system and is triggered by controllers associated with pages. The controller wraps up
any code to be executed in response to the user’s activity.

When MonoRail is used, as a developer you don’t mainly focus on pages as you would in
Web Forms. You focus, instead, on the actions being taken from the page (methods on
a controller class) and its user interface (markup and data placeholders in the view).

MonoRail is different from Web Forms and not completely similar to Web Forms in terms of
skills required. MonoRail has you build pages by focusing on what you need to do and the
response to generate. It also comes with a number of helper frameworks (that is, the Castle
ActiveRecord scaffolding) to further speed up development. Properly handled, it offers
an alternative model to Web Forms that might turn out to be even faster to adopt and more
enjoyable to use.

The success gained by MonoRail definitely accelerated the process of finding ways to
 improve the ASP.NET Web Forms model.

The Turning Point
In our imperfect world, requirements change over time. So some of the major original
strengths of ASP.NET Web Forms turned up to be sort of weakness five years later. Can the
Web Forms model be revised to address its signs of age?

Is a Better ASP.NET Really Possible?
The level of SoC and testability in an ASP.NET solution can be raised, even significantly, by
handcrafting the content of code-behind classes. By extensively using the MVP pattern, you
can take a large share of the page logic out of the code-behind class. When the logic lives in
its own presenter class (flying high, you can also use the term controller here), it can be tested
in isolation with no dependencies on the runtime environment.

As for testability, it should also be noted that the ASP.NET runtime environment is not
 designed with testability in mind. The HTTP context can’t be easily mocked up to a custom
object. To automate tests on an ASP.NET page, you likely need a made-to-measure tool
(either commercial or handmade) that prepares in the background HTTP requests and
 determines a way to check returned values or markup.

As for control over HTML, there’s not much else that can be done in ASP.NET Web Forms to
augment the range of options available to create the user interface. What the platform can
offer remains limited to server controls or HTML literals.

 Chapter 1 Goals of ASP.NET MVC and Motivation for Its Development 21

In the end, it is definitely possible to produce better ASP.NET Web Forms pages with
an increased level of testability and separation of concerns. For more ambitious things, it
should be noted that the runtime environment is not designed with extensibility in mind and
that the Page Controller pattern used for processing requests naturally leads to black-box
 solutions that limit the freedom of developers. Have a look at Figure 1-4.

User-defined

User-defined

Request
interception

HTTP response

ASP.NET worker process

HTTP Runtime

HTTP handler class

H
T

T
P

 C
o

n
te

xt

HTTP packet

HTML

ASPX markup

Code-behind

FIGuRE 1-4 The overall ASP.NET procedure that generates HTML

The ASP.NET runtime environment and the Page Controller pattern centralize the request
processing. Everything takes place in a hard-coded way, and only two customization points
are left to developers: the ASPX markup and the code-behind class.

This is by design. Subsequently, for a radical change a new ASP.NET platform is needed.

However, before we take the plunge into such a new platform—ASP.NET MVC—it would
be interesting to have a quick look at other options for improving the design of ASP.NET
 applications, such as a manual implementation of the MVP pattern.

The Model-View-Presenter Pattern in ASP.NET Web Forms
Today, the Model-View-Presenter (MVP) pattern is considered the best practice for
 organizing the presentation layer of complex, mostly enterprise-class applications.
Developed at Taligent in the early 1990s, MVP was designed to improve on another very
popular design pattern—the Model-View-Controller (MVC) pattern.

22 Part I The Programming Paradigm

In Chapter 3, “The MVC Pattern and Beyond,” I’ll return to both patterns and discuss them
in detail in the context of the ASP.NET MVC framework architecture. For now, let’s briefly
 explore what it means to you as a developer to implement the MVP pattern in an ASP.NET
Web Forms solution. Figure 1-5 shows the overall schema of the MVP pattern.

Forwards user actions

Uses contract to
read/write view data

Invokes a method according
to the user action

Presenter

Model

View

FIGuRE 1-5 The actors of the MVP pattern

An MVP solution separates the concerns for a given problem into three elements, referred
to as actors: the model, view, and presenter. The presenter sits in between the view and
the model; it receives input from the view and issues commands to the model. It then gets
results and updates the view through the contracted view interface. The model represents
the data the application works with, and it can be identified with the public interface of the
 application’s middle tier. Finally, the view is responsible for producing the user interface.

Any communication between the view and presenter takes place through a contracted
 interface. In this way, the presenter is independent from the actual technology used to
 implement the view. It would be possible, for example, to reuse the same presenter class
for an equivalent view developed in an ASP.NET Web Forms and Windows Forms front end.
(This is not simply abstract theory, but it might not be easy to apply in some real scenarios.)

The presenter is an inherently testable class because it has no tight dependencies on the
view. If you also abstract the model to an interface, the presenter becomes an isolated class,
ideal for testing. The view can be devised to be as simple as possible or to incorporate some
presentation logic. A humble and mostly passive view is uniquely responsible for displaying
values. Testing the view, therefore, is simply a matter of ensuring that visual elements are
properly laid out and that the presenter passes expected values. In other words, you don’t
need to automate tests on an MVP passive view.

How would you code MVP in ASP.NET Web Forms?

First, you define an interface for each ASPX page (view) you have in the application. For
 example, for default.aspx you define an IDefaultView interface. The interface contains
 members that abstract the expected content and behavior of the view. We’ll return to this
topic in Chapter 3, but for now Figure 1-6 gives you an idea of what is intended.

 Chapter 1 Goals of ASP.NET MVC and Motivation for Its Development 23

IList<Customer> CustomerList
void AddCustomer(int id, string company)

CustomerID: ANATR

Contact Name: Ana Trujillo

Country: Mexico

Company Name: Ana Trujillo Emparedados y helados string CompanyName
string ContactName
string Country

int SelectedCustomer

string CustomerID

PASSIVE VIEW

SUPERVISING CONTROLLER

FIGuRE 1-6 Abstracting a view to an interface

You implement the interface in the code-behind class of the page. Each member of
the interface is implemented in terms of the actual controls in the user interface. Here’s
an example:

public partial class _Default : Page, IDefaultView

{

 private DefaultViewPresenter presenter;

 protected void Page_Load(object sender, EventArgs e)

 {

 presenter = new DefaultViewPresenter(this);

 if (!IsPostBack)

 presenter.InitializeView();

 }

 #region IDefaultView

 public string CustomerID

 {

 get { return custID.Text; }

 set { custID.Text = value; }

 }

 public string CustomerName

 {

 get { return custName.Text; }

 set { custName.Text = value; }

 }

.
 .
 .

 #endregion

24 Part I The Programming Paradigm

 protected void Button1_Click(object sender, EventArgs e)

 {

 presenter.ExpandCustomer();

 }

.
 .
 .

}

As you can see, the CustomerName property is a wrapper around the Text property of the
server control (that is, a TextBox) that renders the customer name in the user interface.

The typical presenter also features one method for each action the user can take from within
the displayed user interface. If, say, the user can click a button, the presenter is expected to
have a corresponding method to handle the event. No data is passed to the method; the
presenter retrieves any necessary data from the view interface.

Implementing the MVP pattern is not free of charge and might not be worth the effort in
just any ASP.NET page. However, especially in the context of enterprise applications, it can
help you deal with the surrounding complexity and make the whole solution much more
testable and easy to maintain. We’ll return to the topic of viable ASP.NET design patterns in
Chapter 3.

The Web Client Software Factory Experience
An MVP implementation requires sweat and blood to write if you do so entirely on your
own, and that’s why a few developers do it. At some point, the Patterns & Practices group
at Microsoft released a helper framework for building Web clients that relied on the MVP
pattern for the generation of the user interface. This framework is the Web Client Software
Factory (WCSF).

WCSF is a software factory made of a collection of reusable components and libraries to
 apply proven practices and patterns to ASP.NET development. WCSF comes with a bunch
of Visual Studio templates, automated tests, and wizards with the clear purpose of speeding
up development. For more information, see http://msdn.microsoft.com/en-us/
library/cc304793.aspx.

The software factory is built on top of the Windows Workflow Foundation and the Enterprise
Library. As mentioned, WCSF supports MVP and comes with Visual Studio templates and
 extensions (shown in Figure 1-7) that help you to get an MVP implementation without
 needing to write all the code (view interfaces and presenters) yourself.

 Chapter 1 Goals of ASP.NET MVC and Motivation for Its Development 25

FIGuRE 1-7 The Visual Studio extensions from WCSF

Why should you consider using WCSF in your upcoming projects?

Because WCSF is built on the MVP pattern, it gives you neat separation of concerns between
the view and presenter. At the same time, it isn’t a radical paradigm shift from the Web
Forms model and the Page Controller pattern. In other words, you need to get acquainted
with the new API of WCSF, but you’ll be able to reuse all of your existing ASP.NET and control
skills. Internally, the WCSF framework uses inversion of controls extensively, which gives you
a nice way to do unit testing and mock objects in the ASP.NET runtime environment.

That said, WCSF is not for just any applications. WCSF is not a productivity tool tout-court.
More precisely, it is a productivity tool for complex (mostly enterprise-class) applications.
All in all, WCSF hasn’t captured the heart of too many developers; this is mostly because it’s
rather complex to learn and use, and it carries the full weight of the Enterprise Library with it,
which in itself is complex and requires dedication to learn and use. Because WCSF is designed
for enterprise-scale applications, it cannot be seen as a general way of adding testability and
SoC to the ASP.NET Web Forms model for all applications.

26 Part I The Programming Paradigm

ASP.NET MVC at a Glance
ASP.NET MVC is a new platform for building ASP.NET applications. Based on the same
 run-time environment as classic ASP.NET Web Forms, ASP.NET MVC makes developing Web
applications a significantly different experience than the Web Forms model.

ASP.NET MVC was designed to focus on the actions a user can take when browsing a page.
It has a different view engine and allows much more control over the generated markup.
In a way, ASP.NET MVC is action-centric and close to the metal. ASP.NET MVC disregards
the Page Controller pattern and opts for a different pattern that can be considered
a Web-oriented variation of the classic Model-View-Controller (MVC) pattern.

Atop the standard ASP.NET runtime environment, ASP.NET MVC built its own shell of
functionalities. On one end, the ASP.NET MVC shell connects to effective ASP.NET
run-time objects (for example, Request and HttpContext). On the other end, it exposes a set
of intrinsic objects to internal components. The most interesting aspect, though, is that such
intrinsic objects are actually injected into the ASP.NET MVC runtime shell. This makes for an
inherently higher level of testability and is a pillar for building applications with a strong SoC.

ASP.NET MVC Highlights
If you look at the programming model made available to developers, you find that ASP.NET
MVC offers a completely new paradigm.

When you write an ASP.NET MVC application, you think in terms of controllers and views.
Your decisions are about how to expose your controllers to the users and how to pass data to
the view. Each request is resolved by invoking a method on a controller class. No postbacks
are ever required to service a user request, and no view state is ever required to persist the
state of the page. Finally, no server controls exist to produce HTML for the browser.

However, if you look a bit further under the hood of ASP.NET MVC, it’s clear that its way
of working is still based on handling HTTP requests, except that the URL string is treated
 differently and any resulting action is expressed by developers using methods on controller
classes instead of postbacks.

Overall, the ASP.NET MVC programming model poses new challenges to developers. We’ll be
delving into all of them in the rest of the book. For now, let’s briefly summarize some facts
about the ASP.NET MVC programming model.

Underlying Pattern
The working machinery of ASP.NET MVC is based on the combination of two patterns: the
Front Controller pattern and the Model2 pattern. Together, these two patterns propound
a programming model significantly different from ASP.NET Web Forms and, to a great
 extent, require a different skill set.

 Chapter 1 Goals of ASP.NET MVC and Motivation for Its Development 27

The Front Controller pattern involves using a centralized component that handles all
 incoming requests and dispatches them to another component down the pipeline for
 actually servicing the request. How is this different from the Page Controller approach?

In the Page Controller pattern, there’s a different handler for each request, the specific
 handler for which is determined on a URL by URL basis. The Page Controller pattern suggests
you build a hierarchy of pages to reuse some code across pages. Years of experience have
proven that, in Web applications, pages in a hierarchy often grow over time with code that is
not common to all pages in the hierarchy.

In the Front Controller approach, all incoming requests are channeled through a single
 component. In ASP.NET MVC, this component is the MVC HTTP handler. This common class
contains the logic that parses the URL and decides which controller is due to service the
 request and which view component is due to produce the resulting HTML. The controller
is a plain class with public methods, and each method executes an action following the
user gestures. Figure 1-8 illustrates the difference between the Front Controller and Page
Controller approaches in an ASP.NET scenario.

Page HTTP handler
(page1.aspx)

Page HTTP handler
(page2.aspx)

Page HTTP handler
(pageN.aspx)

Page controller

:

Front controller

ASP.NET MVC
HTTP handler

Xxxcontroller

Yyycontroller

Zzzcontroller

HTML
HTTP request

HTTP Runtime

HTTP Runtime

FIGuRE 1-8 The Page Controller and Front Controller patterns

In ASP.NET MVC, the interaction between the front controller and action-specific controllers
and views is ruled by the Model2 pattern. Figure 1-9 presents the sequence diagram for
a request serviced according to the Front Controller+Model2 pattern.

28 Part I The Programming Paradigm

Browser

POST
new

Invoke action

Invoke method

view_Data

Lookup view

Render(view_Data)

HTML response

MVC
HTTP Handler Controller Model View

FIGuRE 1-9 The Model2 pattern in ASP.NET MVC

The front controller figures out the controller to use and invokes one of its methods. The
controller’s method runs, gets some data, and figures out the view to use. Finally, the view
generates the markup for the browser and writes it in the output response stream.

A RESTful Flavor
An architectural style, REST stands for REpresentational State Transfer. It is based on the idea
that the caller receives the representation of the requested resource and can manipulate the
underlying resource via its representation. Callers use addresses to reach resources. REST is
not strictly limited to HTTP, but the Web as a whole works according to the REST style.

Beyond the formal definition of REST you can find in Chapter 5 of Roy Fielding’s doctoral
 dissertation (available at http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm),
REST is an attribute most commonly applied to Web services. A RESTful Web service is a Web
service that can be seen as a collection of addressable resources. Each addressable resource
can be operated on using a set of methods and returns any of a known set of types. Over the
Web, this means that a RESTful service works over HTTP and allows you to address resources
via URIs and exchange MIME types such as JSON or XML.

ASP.NET MVC is an excellent example of a RESTful framework.

 Chapter 1 Goals of ASP.NET MVC and Motivation for Its Development 29

ASP.NET MVC works by sending requests to resources. Each resource is identified with
a URL. The addressable set of resources is the collection of controller objects. Any request
 corresponds to an action executed on an addressable resource. Any request returns HTML.
ASP.NET MVC is plain, simple, and very close to the metal, with no hidden machinery such as
postback events and view state. In a word, it is just RESTful.

Taking Action
ASP.NET MVC leads Web developers to reason in a different way than they do when using
Web Forms. Whereas in Web Forms you focus on the page to render, in ASP.NET MVC you
focus on the action to take and, subsequently, the markup to generate.

You organize the application around a few controller classes, each with a set of methods.
Each URL contains routing information for the front controller to use to identify the target
controller. Action and production of the response are distinct steps taken care of by distinct
subsystems—controllers and the view engine.

In ASP.NET MVC, postback events fired by user interface elements are no longer the way
to add life to pages. Each user action should be mapped instead to a controller method.
Likewise, the classic Web Forms page life cycle and view state are no longer essential to the
processing of the request. Server controls are just one possible way of generating the markup
for the view. You can live without server controls and be much happier than you were with
Web Forms because you have helpers to generate simple pieces of HTML.

Finally, in ASP.NET MVC there’s no URL-to-file direct association. In other words, you usually
do not request the content of an .aspx server file. Instead, you request a URL that maps to
a server action that, in turn, generates markup.

Note One of the arguments often made when comparing ASP.NET MVC and Web Forms is that
the former gains you much more control over the generated HTML markup. It is hard to prove this
statement wrong, but some considerations are in order for further clarification. Really, nothing
prevents you from writing classic ASP.NET pages using plain HTML elements and code blocks.
However, if you do so you lose the benefits (and niceties) of server controls and postback events.
In classic ASP.NET, programming without server controls and postback events means hitting the
metal, not simply getting closer to it. On the other hand, if you use server controls, programming
is easier and more productive but you don’t get full control over the generated HTML.

Testability
The internal, extremely modular architecture of ASP.NET MVC makes it an inherently more
testable framework. The developer’s code is articulated in controller classes. Each controller
class can be designed in a testable way. This can be done either by forcing every controller
method to take input data from its signature or using an injected intrinsic object to wrap the
ongoing HTTP request. When testing is done in this way, the controller class can easily be
tested in isolation with proper mock objects to replace internal dependencies.

30 Part I The Programming Paradigm

In addition, the ASP.NET MVC framework is isolated from the ASP.NET run-time machinery
and uses abstractions of intrinsic objects to process the request. The ASP.NET MVC runtime
infrastructure uses a number of wrapper objects for common ASP.NET intrinsic objects,
 including HttpSessionState, HttpRequest, and HttpContext. In this way, a controller designed
to work against ASP.NET MVC wrappers can receive mock objects and be tested without
spinning up the whole ASP.NET worker process.

Finally, the generation of the markup is a process that belongs to the view engine. The view
engine, as well as many other subsystems around ASP.NET MVC, is abstracted to an interface
and can be replaced declaratively or programmatically. Extensibility and, subsequently,
 testability are two key attributes of the whole ASP.NET MVC framework.

Let’s compare it now to classic ASP.NET Web Forms.

Web Forms vs. ASP.NET MVC
As clearly stated by Microsoft, ASP.NET MVC is not the successor to Web Forms. It is rather
a fully fledged and fully qualified alternative to Web Forms. Each framework has its own set
of peculiarities. Ultimately, it’s hard, and also kind of pointless, to try to decide which one is
objectively better.

Choosing between ASP.NET Web Forms and ASP.NET MVC is essentially a matter of personal
attitude, skills, and of course, customer requirements. As an architect or developer, however,
you definitely need to understand the structural differences between the frameworks so that
you can make a thoughtful decision.

Let’s start our analysis with a look at the recognized pros and cons of each framework.

Note Although I can’t guarantee the following list of pros and cons is exhaustive, I do believe
that it nails down the most important facts about ASP.NET MVC and ASP.NET Web Forms.
This said, placing a given fact in the pro or con column, well, that is often a matter of your
 personal perspective.

Pros and Cons of Web Forms
ASP.NET Web Forms is a stable and mature platform fully supported by heaps of third-party
controls and tools. The Web Forms model provides a simulated stateful model for Web
 developers, effectively mimicking the desktop point-and-click metaphor that gained so much
success in the past with Visual Basic and RAD tools. As a result, you don’t have to be a Web
expert with a lot of HTML and JavaScript knowledge to write effective Web applications.

 Chapter 1 Goals of ASP.NET MVC and Motivation for Its Development 31

To simulate a stateful programming model over the Web, ASP.NET Web Forms introduces
features such as view state, postbacks, and an overall event-driven paradigm. To write an
ASP.NET application, as a developer you need to know the basics of .NET development, the
programming interface of some ad hoc components (such as server controls), plus of course,
quite a bit about the underlying programming postback-based paradigm. Server controls
that generate HTML programmatically contribute significantly to a fast development cycle.

Productivity and rapid development of data-driven, line-of-business applications have been
the selling points of ASP.NET Web Forms.

Years of experience prove beyond any reasonable doubt that separation of concerns has not
been integral to the Web Forms paradigm. Although ASP.NET Web Forms certainly doesn’t
prevent SoC, it doesn’t make it the natural choice either. Manual MVP implementation and
WCSF are valid solutions, but they fail to deliver the simplicity of use that is key to rapid and
widespread adoption. Likewise, automated testing of a Web Forms application is difficult,
and not just because of a lack of SoC. ASP.NET Web Forms is based on a monolithic runtime
environment that can be extended, to some extent, but it is not a pluggable and flexible
system. It’s nearly impossible to test an ASP.NET application without spinning up the whole
runtime.

ASP.NET Web Forms was perfect for its time. A few years later, though, we find ourselves
facing a different set of challenges, and some features that were originally clear strengths of
ASP.NET now turn out to be weaknesses.

For modern Web pages, abstraction from HTML is a serious issue because it hinders
 accessibility, browser compatibility, and integration with popular JavaScript frameworks such
as jQuery, Dojo, and PrototypeJS. The postback model that defaults to each page posting to
itself makes it harder for search engines to rank ASP.NET pages very high. Search engines and
spiders work better with links that have parameters, and even better if they’re rationalized to
human-readable strings.

The ASP.NET Web Forms postback model, on the other hand, goes in the opposite direction.
Also, an excessively large view state is problematic because the keyword the search engine
might rank could be located past the view state, and therefore far from the top of the
 document. Some engines return a lower rank in this case.

Therefore, for a number of good reasons, a new ASP.NET platform was designed.

Note Some of the issues related to Web Forms have been smoothed out in ASP.NET Web
Forms 4. For example, you have much more control over the view state and HTML. You also have
a richer URL rewriting engine—the same one you find in ASP.NET MVC. This doesn’t change the
overall outlook, however. The design of ASP.NET Web Forms reflects a different set of priorities
than the ones that exist today. Using ASP.NET Web Forms is still an excellent option for building
applications, but something different is being demanded loudly. And with good reason.

32 Part I The Programming Paradigm

Pros and Cons of ASP.NET MVC
ASP.NET MVC is a completely new framework for building ASP.NET applications, designed
from the ground up with SoC and testability in mind. With ASP.NET MVC, you rediscover the
good, old taste of the Web—stateless behavior, full control over every single bit of HTML,
and total script and CSS freedom.

Processing the request and generating the HTML for the browser are distinct steps and
 involve distinct components. Each of these components—controllers and views—has its own
interface and can be replaced if necessary.

In ASP.NET MVC, there’s no dependency on ASPX physical server files. ASPX files can still be
part of your project, but they now serve as plain HTML templates, along with their code-behind
classes. The default view engine is based on the Web Forms rendering engine, but you can use
other pluggable engines such as NVelocity or XSLT. (I’ll cover controllers and the view engine in
full detail in Chapter 4, “Inside Controllers,” and Chapter 5, “Inside Views.”)

The runtime environment is largely the same as in ASP.NET Web Forms, but the request cycle
is simpler and more direct. An essential part of the Web Forms model, the page life cycle,
is now just an optional implementation detail in ASP.NET MVC. Figure 1-10 compares the
 run-time stack for Web Forms and ASP.NET MVC.

ASP.NET HTTP runtime

MVC HTTP Handler

Controller Factory

Method execution

View Engine

Updating Controls

Response output stream

ASP.NET
MVC

Web
Forms

Page class

(Mapped)
Page HTTP Handler

Page life cycle
(preliminaries)

Postback event

Page life cycle
(finalization)

IIS

Browser

FIGuRE 1-10 The run-time stack of ASP.NET MVC and Web Forms

 Chapter 1 Goals of ASP.NET MVC and Motivation for Its Development 33

As you can see, the run-time stack of ASP.NET MVC is simpler and the difference is because
of the lack of a page life cycle. However, this makes it problematic to maintain the state of
visual elements across page requests.

As mentioned, ASP.NET MVC is closer to the metal, and this has its own side effects. If
you need to maintain state, how to do that is up to you. For example, you can store it in
Session or Cache or you can even create, guess what, your own tailor-made, view state–like
 infrastructure. In the end, the simplicity of ASP.NET MVC is rather the result of different
 architectural choices than some overhead in the design of the Web Forms model.

So ASP.NET MVC brings to the table a clean design with a neat separation of concerns,
a leaner run-time stack, full control over HTML, an unparalleled level of extensibility, and
a working environment that enables, rather than penalizes, test-driven development (TDD).

Is ASP.NET MVC, therefore, a true paradise for Web developers? Just like with Web Forms,
what some perceive as a clear strength of ASP.NET MVC, others may see as a weakness.

To gain full control over HTML, JavaScript, and CSS, ASP.NET MVC requires that you write
Web elements manually, one byte after the next. This means that, for the most part, you are
responsible for writing every single or <table> tag you need. In ASP.NET MVC, there’s
no sort of component model to help you with the generation of HTML. As of today, HTML
helpers and perhaps user controls are the only tools you can leverage to write HTML more
quickly. Overall, some developers may see ASP.NET MVC as taking an entire step backward in
terms of usability and productivity.

Note Because ASP.NET MVC supports pluggable view engines, you are not forced to express
your desired presentation using HTML. You can consider adopting a non-HTML view engine to
express the view you want and then have it converted to plain HTML. In both cases, though, you
can rely on JavaScript libraries to help you create markup programmatically.

Another point to be made, regarding the impact of ASP.NET MVC on everyday development,
is that it requires some up-front familiarity with the MVC pattern. You need to know
how controllers and views work together in the ASP.NET implementation. In other words,
ASP.NET MVC is not something you can easily learn as you go. In my experience, this can be
the source of decreased productivity for the average developer, especially for the average
 developer with some years of experience with Web Forms.

Overall, the possible initial decrease of productivity is nothing dramatic and likely nothing
to be seriously worried about, because it can be recovered in a matter of days with study
and application. Likewise, it is something that shouldn’t be ignored in order to prevent more
serious worries and concerns. ASP.NET MVC requires full awareness of its features. Although
it can sometimes look dangerously similar to Web Forms, it is (architecturally speaking)
 significantly different. In Chapter 5, I’ll focus on this point while demonstrating how tricky it
can prove to be using server controls in ASP.NET MVC.

34 Part I The Programming Paradigm

This consideration leads us straight to another important point—the skills and attitude of the
development team.

Do Not Overlook a Team’s Skills and Attitude
All in all, ASP.NET Web Forms and ASP.NET MVC are functionally equivalent in the sense that
a skilled team can successfully use either to build any Web solution. The skills, education, and
attitude of the team, though, are the key points to bear in mind.

Full control over HTML, for example, can be a lifesaver to one person but a nightmare to
another. I was shocked the first time I saw the content of a nontrivial view page in ASP.NET
MVC. But when I showed the same page to a customer whose application was still using
a significant number of ASP pages, well, he was relieved.

If you have accessibility as a strict requirement, you probably want to take full control over
the HTML being displayed. And this is not always entirely possible with Web Forms. On the
other hand, if you’re building a heavy data-driven application, you’ll welcome the set of
 data-bound controls and statefulness offered by Web Forms.

Correctly, Microsoft has not positioned ASP.NET MVC as a replacement for ASP.NET Web
Forms. Web Forms is definitely a paradigm that works for Web applications. At the same
time, a non-Microsoft, MVC-based Web programming framework, Ruby-on-Rails, has
proved that MVC can also be a successful pattern for Web applications; and the enthusiastic
 welcome received by ASP.NET MVC just confirms this.

Indisputable Facts
After using Web Forms for years, I recognize a number of its drawbacks that ASP.NET MVC
addresses quite well: testability, HTML control, and separation of concerns. But though I see
ASP.NET MVC as an equally valid option at this time, I don’t believe it to be a silver-bullet
 solution for every Web application.

In my opinion, ASP.NET MVC in its first version lacks some level of abstraction for creating
standard pieces of HTML. HTML helpers (discussed later, in Chapter 5) are an interesting
 attempt to speed up HTML creation. I hope to see in the near future a new generation of
MVC-specific server controls that are as easy to learn and use as Web Forms server controls
but that are totally unbound from the postback and view-state model.

ASP.NET Web Forms and ASP.NET MVC are not in competition in the sense that one is
 supposed to replace the other. You have to choose one, but different applications might
force you to make different choices. In the end, it’s really like many Microsoft presenters
often observed: It’s like choosing between driving a car or a motorcycle when taking
a trip. Each trip requires a choice, and having both vehicles available should be seen as an
 opportunity, not as a curse.

 Chapter 1 Goals of ASP.NET MVC and Motivation for Its Development 35

To summarize, here is my top-ten list of hard-to-deny facts about both frameworks:

 1. Web Forms is hard to test.

 2. ASP.NET MVC requires or allows you to specify every little bit of HTML. (However, it
also offers to plug in an alternative view engine that might support a non-HTML syntax
to express the view.)

 3. ASP.NET MVC is not the only way to get separation of concerns in ASP.NET.

 4. Web Forms allows you to learn as you go.

 5. The size of the view state can be largely controlled (because there are better tools in
ASP.NET 4), and the view state can even be disabled.

 6. Web Forms was designed to abstract the full Web machinery.

 7. ASP.NET MVC was designed to surface the underlying architecture of the Web instead
of hiding it. This is what makes it a RESTful framework.

 8. ASP.NET MVC was designed with testability and Dependency Injection (DI) in mind.

 9. ASP.NET MVC guides you toward better design of code.

 10. ASP.NET MVC currently lacks a component model. But it is just at the beginning of
a presumably very long path.

ASP.NET MVC was not created to replace Web Forms but to partner with it and deliver
a richer set of options to architects. ASP.NET MVC turns some of the weaker elements of
Web Forms into its own internal strengths. However, problems such as lack of testability,
SoC, limited search engine optimization (SEO), and HTML control can be avoided or reduced
in Web Forms with some discipline and good design, though the framework itself doesn’t
 provide enough guidance.

Summary
I first saw Microsoft ASP.NET in action in 1999, when it was tentatively named ASP+. At that
time, building a Web application on the Microsoft platform was a matter of assembling
a bunch of ASP pages.

ASP.NET received a very warm welcome from the community of developers. It simplified
a number of everyday tasks and, more importantly, enabled developers to work at a higher
level of abstraction. This allowed them to focus more on the core functions of the Web
 application rather than on common tasks related to Web page design.

Based on server controls, ASP.NET allows developers to build real-world Web sites and
 applications with minimal HTML and JavaScript skills. The whole point of ASP.NET is
 productivity, achieved through powerful tools integrated in the runtime as well as the
 provision of development facilities, such as server controls, user controls, postback events,

36 Part I The Programming Paradigm

view state, forms authentication, and intrinsic objects. The model behind ASP.NET is called
Web Forms, and it was clearly inspired by the desktop Windows Forms model (which, in turn,
was deeply inspired by the Visual Basic RAD philosophy).

So why did Microsoft release another ASP.NET framework, called ASP.NET MVC?

The simple answer is that this “other” ASP.NET framework better responds to the needs of
today’s Web developers. Web Forms moves toward an abstraction of the Web that simulates
a stateful environment, whereas ASP.NET MVC leverages the natural statelessness of the
Web and guides you toward building applications that are loosely coupled and inherently
 testable, search-engine friendly, and have full control of HTML. In any case, keep in mind that
there’s nothing you can do in ASP.NET MVC that can’t be done in Web Forms and vice versa.
The how may be different, but the what is not.

As a Web developer or architect, you should know exactly what each framework has to offer
and how it lets you approach every task related to Web development. Beyond that, feel
free to choose the tool that you reckon is right for the job and for the people you have in
your organization. You don’t have to go with ASP.NET MVC because it’s cool and modern.
Likewise, you don’t have to stick to ASP.NET Web Forms because that’s all you’ve been doing
for the past five years. Making a choice is an extra step, but two options are better than one.

Today, ASP.NET Web Forms and ASP.NET MVC are two distinct and functionally equivalent
models for ASP.NET development. Could these two models merge in some near or even
 remote future? If this were to happen, my guess is that it would be ASP.NET MVC that would
get enhanced with some more abstract component model, rather than Web Forms moving
toward testability and SoC. But, again, this is half my guess and half my hope. On that point,
we’ll just have to wait and see.

 37

Chapter 2

The Runtime Environment
Part of the inhumanity of the computer is that, once it is competently programmed
and working smoothly, it is completely honest.

—Isaac Asimov

From the developer’s perspective, ASP.NET Web Forms and ASP.NET MVC look like two
 different and largely incompatible frameworks. Under the hood, though, they have a lot in
common. In particular, both frameworks are built on top of the same runtime environment—
the standard ASP.NET runtime environment.

Generally speaking, the runtime environment is the collection of components that, hosted
within the Web server, contribute to processing an incoming HTTP request to some response
for the client browser. This runtime machinery is the same for both ASP.NET Web Forms and
ASP.NET MVC. Among other things, this means that classic ASP.NET pages and ASP.NET MVC
resources can be hosted side by side in the same application.

Even though the underlying machinery is the same, the steps taken to process an ASP.NET
MVC request and a Web Forms request are quite different. In particular, ASP.NET MVC installs
a sort of personalized run-time shell atop the standard ASP.NET runtime and implements
a different pipeline for any requests that it picks up.

In this chapter, I’ll first briefly review the pillars of the ASP.NET runtime environment and then
explore the characteristics of the ASP.NET MVC run-time shell and explain the work it does to
support the new MVC programming model.

The ASP.NET Runtime Machinery
Any Web application is hosted within a Web server; for ASP.NET applications, the Web server
is typically Microsoft Internet Information Services (IIS). A Web server is primarily a server
application that can be contacted using a bunch of Internet protocols, such as HTTP, File
Transfer Protocol (FTP), Network News Transfer Protocol (NNTP), and Simple Mail Transfer
Protocol (SMTP). IIS—the Web server included with the Microsoft Windows operating
 system—is no exception.

The Web server—say, IIS—spends most of its time listening to a variety of ports, including
port 80, which is where HTTP packets are usually forwarded. The details of what happens
next depend on the programming interface of the Web server and the functionalities of the
external modules bound to the Web server.

38 Part I The Programming Paradigm

Note When it comes to ASP.NET, frankly it doesn’t make much sense to look around for a Web
server other than Microsoft’s IIS. Nevertheless, with the proper set of add-on modules you can
make ASP.NET run on other Web servers, such as Apache. In particular, for Apache the mod_mono
module is used to run ASP.NET applications. The mod_mono module runs within an Apache process
and forwards all ASP.NET requests to an external Mono process that actually hosts your ASP.NET
application. For more information, pay a visit to http://www.mono-project.com/Mod_mono.

ASP.NET and the IIS Web Server
When the request for a resource arrives, IIS first verifies the type of the resource. Static
resources such as images, text files, HTML pages, and scriptless ASP pages are typically
 resolved directly by IIS without the involvement of any external modules. IIS accesses the file
on the local Web server machine and flushes its contents to the output console so that the
requesting browser can receive it.

Resources that require server-side elaboration are passed on to any tailor-made modules
that are registered to handle those resources. Requested resources are mapped to registered
modules based on their file extension.

The details of how a request is being processed depend on the process model in use within IIS
and ultimately on the internal architecture of the Web server. The internal architecture of IIS
has changed quite a bit since the introduction of ASP.NET 1.0 back in 2002. Figure 2-1 shows at
a relatively high level of abstraction how the IIS architecture evolved from IIS 5.0 up to IIS 7.0.

Note The only purpose of Figure 2-1 is to show the overall evolution of the IIS architecture in
relation to ASP.NET, so I tried to keep the figure clear and straight to the point. This said, I do
 recognize that the figure lacks or simplifies a number of significant details, including the host
process of the WWW service, the role of the Web Administration Service (WAS) and what it takes
for a request to be served by IIS natively or forwarded to the worker process. If you need to delve
deeper into the IIS architecture, I recommend getting a copy of Internet Information Services 7.0
Resource Kit (Microsoft Press, 2008).

As you can see from the figure, a significant innovation over the years has been the
 introduction of application pools to group multiple Web applications under the same
 instance of a worker process. In parallel, IIS gained many more built-in functionalities to
implement earlier in the process chain and, for any type of resource, many of the powerful
features of the ASP.NET runtime, such as process recycling, output caching, and form-based
 authentication. This is known as the Integrated IIS and ASP.NET request-processing pipeline,
and it has been up and running since IIS 7.0 in Windows Server 2008.

Let’s expand on some architectural elements of IIS, focusing on the most recent version (IIS 7.0)
available with Windows 2008 Server and, in a shrink-wrapped version, also on Windows Vista.

 Chapter 2 The Runtime Environment 39

Browser

IIS 5.0

IIS 6.0

IIS 7.0

www
service

www
service

WAS

ASP.NET

Static/Nonstatic

Static

ht
tp

.s
ys

ht
tp

.s
ys

inetinfo.exe

w3wp.exe

aspnet_wp.exe

w3wp.exe

CLR

aspnet_isapi.dll

aspnet_isapi.dll
Browser

Browser
HTTP

HTTP

HTTP

Named
Pipe

ASPNET
Worker
Process

CLR
HTTP Pipeline

HTTP
handler

HttpRuntime HttpApplication

CLR
HTTP Pipelline

IIS Messaging Pipeline

HttpRuntime

ASP.NET

Authentication

Output Caching

Execute Handler

HttpApplication

Application Pool

Application Pool

Response Generation

FIGuRE 2-1 Architectural changes to IIS over the years

Note Windows 7 comes with a version of IIS that is superior to the version you find in Windows
Vista. However, the version of IIS that ships with desktop operating systems is not particularly
relevant here in the context of an ASP.NET book. Although you can certainly develop part of
your Web site on a Windows Vista or Windows 7 machine, using Windows Vista or Windows 7
as a Web server to host a site is simply out of the question. Although it’s fully functional, the IIS
version that ships with Windows Vista and Windows 7 can be seen as a live tool to experiment
and test. The “real” IIS for Web developers and administrators is currently the one available with
Windows 2008 Server.

Handling the Request
In both IIS 6.0 and IIS 7.0, any incoming HTTP request is captured by an HTTP listener (the
http.sys driver) that operates as a kernel-level module. A kernel-level module lives in its own
protected environment and is never exposed to any third-party code. Among other things,
this means that no user-mode crashes can ever affect the stability of IIS.

Any request the driver intercepts is posted to the request queue of the appropriate
 application pool. An application pool is a blanket term that identifies a worker process
and a virtual directory. A module, called the Web Administration Service (WAS, not to be

40 Part I The Programming Paradigm

 confused with the Windows Activation Service, which also uses the same acronym), reads
from the IIS metabase and instructs the http.sys driver to create as many request queues as
there are application pools registered in the metabase.

So when a request arrives, the driver looks at the URL and queues the request to the
 corresponding application pool. The WAS module is also responsible for creating and
 administering the worker processes for the various pools. The IIS worker process is an
 executable named w3wp.exe, whose main purpose is extracting HTTP requests from the
 kernel-mode queue and processing them. The behavior of the worker process actually
 depends on the working mode of IIS.

Note In IIS 6.0 and later, the worker process that serves up the request is not specific to a particular
server technology or request type. In other words, the same worker process can serve an ASP.NET
Web Forms request, an ASP.NET MVC request, or even a classic ASP request. Part of the IIS platform,
the w3wp.exe worker process hosts a core application handler dynamic-link library (DLL) to actually
process the request and load request-specific components to produce the response.

ISAPI Extensions
A Web server generally knows how to serve a few types of resources (static HTML pages, text
files, images) and forwards other requests to ad hoc modules that basically exist to extend
the Web server’s core capabilities.

For this to happen, the Web server provides a documented application programming
 interface (API) for enhancing and customizing the server’s capabilities. Historically speaking,
the first of these extension APIs was the Common Gateway Interface (CGI). A CGI module is
a new application that is spawned from the Web server to service a request.

As you can easily understand, the CGI approach is rather inadequate for modern, high-volume
Web sites because it creates severe scalability issues. IIS supports CGI applications, but you
will seldom use this feature unless you have serious backward-compatibility issues. In the past
decade, Web servers started supplying an alternative and more efficient model to extend the
capabilities of the server. In IIS, this alternative model takes the form of the Internet Server
Application Programming Interface (ISAPI).

An ISAPI extension is a Win32 DLL that gets loaded into the IIS worker process that’s in
charge for any given Web application. In IIS 6.0 and later, this worker process is w3wp.exe.
The DLL communicates with the host process by exposing a well-known set of entry-point
functions—the Win32 ancestor of modern service contracts. To start servicing a request,
the worker process just ensures the ISAPI extension DLL is loaded in memory and then calls
a well-known entry point in its public interface.

In Figure 2-1, you recognize the ISAPI extension for ASP.NET requests in the aspnet_isapi.dll
component. Figure 2-2 offers a view of the IIS 7.0 metabase configuration tool where the
 mapping between .aspx resources and aspnet_isapi.dll is established.

 Chapter 2 The Runtime Environment 41

FIGuRE 2-2 Setting the handler for ASPX resources in IIS 7.0

Depending on how IIS is configured to work, the w3wp.exe process might load the aspnet_
isapi.dll extension. In turn, the ISAPI extension will load the CLR in the worker process and
launch the ASP.NET runtime pipeline to actually process the request. (I’ll return to the
 discussion of IIS working mode in just a moment.)

In the IIS jargon, ISAPI extensions are plain Win32 DLLs designated to do some server-side
processing and return a response. The extensibility model of IIS, though, includes another
flavor of component as well—ISAPI filters.

ISAPI Filters
ISAPI filters are components that intercept specific server events before the server itself
 handles them. Upon loading, the filter indicates what event notifications it will handle. If any
of these events occur, the filter can process them or pass them on to other filters.

ISAPI filters can accomplish tasks such as implementing custom authentication schemes,
compression, encryption, logging, and request analysis. The ability to examine, and if necessary
modify, both incoming and outgoing streams of data makes ISAPI filters powerful and flexible.

Filters are also a delicate gear in the IIS machinery. They can facilitate applications and let
them take control of customizable aspects of the engine. For this same reason, though, ISAPI
filters can also degrade performance if they’re not written carefully or if they’re used when
not strictly necessary. Filters, in fact, can run only in-process.

42 Part I The Programming Paradigm

Extensions and Filters in IIS 7.0
ISAPI extensions and ISAPI filters are specific members of the IIS ecosystem. In any version
of IIS older than version 7.0, you have no choice other than writing such ISAPI components
as a C or C++ DLL, using either Microsoft Foundation Classes (MFC) or perhaps the ActiveX
Template Library (ATL).

For years, ASP.NET offered capabilities largely equivalent to ISAPI extensions and filters
within its own runtime environment. HTTP handlers are the ASP.NET counterpart to ISAPI
 extensions, whereas HTTP modules are the ASP.NET version of filters. The big difference is
that ASP.NET HTTP handlers and modules are written using managed code and, as such, they
are significantly easier to write than ISAPI extensions and filters.

Note Before IIS 7.0, you had essentially two distinct runtime environments: one within the IIS
process and one within the application pool of any hosted ASP.NET application. The two runtime
environments had different capabilities and programming models. Only resources mapped to
the ASP.NET ISAPI extension were subjected to the ASP.NET runtime environment; all the others
were processed within the simpler IIS machinery. IIS 7.0 offers a new runtime environment nearly
identical to that of ASP.NET. When this runtime environment is enabled, ASP.NET requests use
the managed ASP.NET runtime environment only to produce the response.

IIS 7.0 represents the unification of the ASP.NET and IIS platforms. In IIS 7.0, HTTP handlers
and modules, the runtime pipeline, and configuration files become constituent elements
of a common environment. The whole IIS 7.0 internal pipeline has been componentized to
originate a distinct and individually configurable component—the IIS Messaging Pipeline box
that was shown in Figure 2-1. In addition, a new section has been added to the web.config
schema of ASP.NET applications to configure the surrounding IIS environment.

In a certain way, it’s as if the ASP.NET runtime expanded to incorporate and replace the
 surrounding Web server environment. It’s hard to say whether things really went this way or
whether it was the other way around. The result is that the same concepts and instruments
you know from ASP.NET are available in IIS 7.0 at the Web server level.

This means that in IIS 7.0 you can write HTTP handlers and modules to filter any requests and
implement any additional features using .NET code for whatever resources the Web server
can serve. More precisely, you’ll continue writing HTTP handlers and modules as you do
 today for ASP.NET, except that you will be given the opportunity to register them for any file
type, even those not natively mapped to ASP.NET such as images and HTML files.

Note Obviously, old-style ISAPI extensions and filters are still fully supported in IIS 7.0. However,
it’s easy to predict that unmanaged extensions and filters will soon become a thing of the past.
Looking back at Figure 2-1, you should note that the IIS Messaging Pipeline can work with
 unmanaged ISAPI filters as well as load a common language runtime (CLR) instance and trigger
managed HTTP modules. At the same time, executing the handler might mean invoking an
 unmanaged ISAPI extension as well as yielding to the CLR and the HTTP runtime environment.

 Chapter 2 The Runtime Environment 43

Application Pools
As in Figure 2-1, ASP.NET was originally built as a stand-alone runtime environment to
be hosted in IIS 5.0 running on Windows 2000 Server. The ASP.NET runtime environment
was governed by a made-to-measure worker process. The advent of IIS 6.0 and Windows
Server 2003 marked the introduction of application pools and led developers to choose one
of these pools to deploy their own application.

An application pool is a group of one or more URLs that are served by an instance of
the IIS worker process. An application pool represents the boundary that contained Web
 applications cannot cross. Applications in one pool are isolated from applications in other
pools and cannot affect them in any way.

Through the IIS Manager console, you can give a pool a friendly name, set the version of
the Microsoft .NET Framework to be loaded, select the security account under which the
 application pool’s worker process will run, and edit recycling conditions for hosted applications.

Another parameter you can configure for all applications in a given IIS 7.0 pool is the pipeline
working mode: Integrated or Classic mode. You choose Integrated if you want IIS to process
requests through its own managed pipeline before handing them over to ASP.NET for
generating any response. If you want, or more likely need, IIS to yield to the ASP.NET runtime the
whole burden of processing any ASP.NET request (authentication, caching, and the like), you stick
to Classic mode. Classic mode is the standard way of working for versions of IIS earlier than 7.0.

Figure 2-3 shows the dialog box through which you configure the application pool for
a given Web application.

FIGuRE 2-3 Configuring the application pool

44 Part I The Programming Paradigm

ASP.NET Runtime Components
A typical ASP.NET request has the form of a URL that ends with the .aspx extension. And
 typically such a request is resolved by loading the content of the corresponding .aspx file
and parsing it to HTML.

Does it mean that the ASP.NET runtime doesn’t let you place a request for an action or,
more in general, for anything else different from a server disk file? Well, not exactly. And the
 existence of the ASP.NET MVC framework itself proves this!

The actual behavior of the ASP.NET runtime machinery can be affected by some runtime
pluggable components that intercept the request at various prefixed stages and alter the
regular processing flow. These runtime components are HTTP handlers and HTTP modules.
Using these special components, you can do a number of interesting things such as rewriting
the URL or redirecting the request to a specific HTTP handler to service it.

An HTTP handler is a special managed class that implements a contracted interface for the
ASP.NET runtime environment (or the IIS messaging pipeline) to invoke. The overall behavior
of an HTTP handler is fairly simple: all it does is get the HTTP context of the pending request
and processes it, performing any necessary calculation and writing any response down to the
output stream.

An HTTP module is also a managed class that implements another contracted interface.
The interface lets the HTTP module intervene at any or all prefixed stages a request goes
through during processing. After the interface is registered with the application (or the IIS
 messaging pipeline), an HTTP module is automatically invoked for any incoming request
when the request processing reaches the hooked stage. Depending on the stages it is
 designed to handle, an HTTP module can even alter the context and content of the request.
Prefixed stages for an HTTP module to intervene exist both before and after the HTTP
 handler generates the response for the request.

Important I should make this point clear here in the early stages of the book. In a nutshell,
ASP.NET MVC is based on a collection of ad hoc HTTP modules and HTTP handlers that
 altogether transform ASP.NET into a RESTful platform and bypass the classic Web Forms pipeline
and define and support a brand new programming model.

Before we delve deeper into the intricacies of the bolted-on ASP.NET MVC runtime
 environment, let’s recap the important actions that take place within the native ASP.NET
 runtime environment.

Life Cycle of an ASP.NET Request
Any HTTP requests that knock at the IIS door that are directed at a hosted ASP.NET
 application are handed over to the instance of the IIS worker process in charge of the pool
that the application belongs to.

 Chapter 2 The Runtime Environment 45

The details of what happens next depends on the IIS pipeline mode—Classic or Integrated.

Note For an .aspx request, it makes no significant difference whether the application pool
 operates in Integrated or Classic mode under IIS 7.0. That request is always handed over to the
ASP.NET ISAPI for actual response generation.

The Integrated mode affects ASP.NET applications in the sense that developers can now exercise
stricter control (HTTP handlers and HTTP modules) over any requested resources, even those
(for example, image files) not mapped to an ASP.NET application.

From the IIS perspective, the Integrated mode sets up a different architecture for processing any
requests—including, but not limited to, ASP.NET requests.

Figure 2-4 illustrates the life cycle of an ASP.NET request in Classic pipeline mode. This is the
way ASP.NET requests are processed in IIS 6.0 and IIS 7.0 Classic.

CLR

HTTP
Request

Authentication

Request Handling

Output

ASP.NET

AnonymousBasic Windows
HttpRuntime

HttpApplication

Forms Authentication

Building HTTP Context

HTTP Handler

Finalization

ISAPIStatic FileCGI

Log Compression

FIGuRE 2-4 IIS 6.0/7.0 Classic pipeline mode

The request first goes through the IIS authentication stage, and then it’s examined to determine
what the right handler is. If the handler turns out to be an ISAPI extension, the request is handed
over to that extension. In particular, if it’s an ASP.NET request, the ASP.NET ISAPI makes it flow
through the standard ASP.NET runtime pipeline, where steps such as forms authentication,
authorization, session state acquisition, output caching, and mapping of the HTTP handler
follow one another until the response is generated. ASP.NET returns the response to IIS, which
logs the response, optionally compresses the response, and sends it back to the browser.

Figure 2-5, on the other hand, illustrates what happens in the case of an Integrated pipeline.

46 Part I The Programming Paradigm

Authentication

Request Handling

AnonymousWindows Forms

Output

CLR

ApplicationManager

HttpApplication

Building HTTP Context

Execute HTTP Handler

CGI Static File

ASPX

ISAPI Extensions

ASP

HTTP
Request

Basic

CompressionLog

FIGuRE 2-5 IIS 7.0 Integrated pipeline mode

The most evident difference is that the ASP.NET pipeline is greatly simplified and most of its
steps have been moved to (actually, integrated in) the IIS pipeline. For an ASP.NET request, it
might not be a huge change; it is, though, a big change for any other types of requests and
it’s good news for ASP.NET developers, who can now attain more programming power.

In Integrated mode, IIS makes the request flow through a greater number of steps in its
 messaging pipeline than in earlier versions. At the end of the day, the overall pipeline
looks a lot like the ASP.NET HTTP pipeline. In this pipeline, you can register your own HTTP
 modules (both managed and unmanaged) to handle any resources. Forms authentication is
still supported, but the HTTP module responsible for that is now invoked from IIS rather than
from the ASP.NET runtime environment.

In an integrated pipeline, an ASP.NET request is like any other request except that, at some
point, it yields to a sort of simplified ASP.NET runtime environment that now just prepares
the HTTP context, maps the HTTP handler, and generates the response.

When the application pool that contains an ASP.NET application running in Integrated mode
is initialized, it hosts ASP.NET in the worker process and gives ASP.NET a chance to register
a set of built-in HTTP modules and handlers for the IIS pipeline events. This guarantees, for
example, that Forms authentication, session state, and output caching work as expected in
ASP.NET. At the same time, the ASP.NET runtime also subscribes to receive notification of
when an ASP.NET request needs processing.

 Chapter 2 The Runtime Environment 47

Let’s expand on the specific events that form the life cycle of an ASP.NET request.

Important The sequence of events in Classic and Integrated mode is the same. However,
 because in Integrated mode ASP.NET modules execute in the IIS messaging pipeline, they can
subscribe to certain events (for example, authentication, begin-request) earlier than in plain
ASP.NET processing. This fact makes possible previously unavailable functionality and increases
the power made available to ASP.NET developers.

In particular, in Integrated mode your HTTP modules are allowed to intercept the request before
any processing has taken place (for example, for URL rewriting). Likewise, you can write HTTP
modules to replace built-in authentication modes, modify the headers of an incoming request, or
filter outgoing responses for any content type and not just for ASP.NET requests.

Events in the Request Life Cycle
The following list of events are fired within the IIS messaging pipeline and, as such, they are
available for HTTP modules to subscribe to. Events are fired in the following sequence:

 1. BeginRequest The ASP.NET HTTP pipeline begins to work on the request. This event
reaches the application after Application_Start.

 2. AuthenticateRequest The request is being authenticated. ASP.NET and IIS integrated
authentication modules subscribe to this event and attempt to produce an identity.
If no authentication module produced an authenticated user, an internal default
 authentication module is invoked to produce an identity for the unauthenticated user.
This is done for the sake of consistency so that code doesn’t need to worry about null
identities.

 3. PostAuthenticateRequest The request has been authenticated. All the information
available is stored in the HttpContext’s User property at this time.

 4. AuthorizeRequest The request authorization is about to occur. This event is commonly
handled by application code to perform custom authorization based on business logic
or other application requirements.

 5. PostAuthorizeRequest The request has been authorized.

 6. ResolveRequestCache The runtime environment verifies whether returning a
 previously cached page can resolve the request. If a valid cached representation is
found, the request is served from the cache and the request is short-circuited, calling
only any registered EndRequest handlers. Both ASP.NET Output Cache and the new
IIS 7.0 Output Cache feature “execute now” capabilities.

 7. PostResolveRequestCache The request can’t be served from the cache, and the
 procedure continues. An HTTP handler corresponding to the requested URL is created
at this point. If the requested resource is an .aspx page, an instance of a page class is
created.

48 Part I The Programming Paradigm

 8. MapRequestHandler The event is fired to determine the request handler.

 9. PostMapRequestHandler The event fires when the HTTP handler corresponding to the
requested URL has been successfully created.

 10. AcquireRequestState The module that hooks up this event is willing to retrieve any
state information for the request. A number of factors are relevant here: the handler
must support session state in some form, and there must be a valid session ID.

 11. PostAcquireRequestState The state information (such as Application or Session) has
been acquired. The state information is stored in the HttpContext’s related properties
at this time.

 12. PreRequestHandlerExecute This event is fired immediately prior to executing the
 handler for a given request.

 13. ExecuteRequestHandler At this point, the handler does its job and generates the
 output for the client.

 14. PostRequestHandlerExecute When this event fires, the selected HTTP handler has
completed and generated the response text.

 15. ReleaseRequestState This event is raised when the handler releases its state
 information and prepares to shut down. This event is used by the session state module
to update the dirty session state if necessary.

 16. PostReleaseRequestState The state, as modified by the page execution, has been
persisted.

 17. UpdateRequestCache The runtime environment determines whether the generated
output, now also properly filtered by registered modules, should be cached to be
 reused with upcoming identical requests.

 18. PostUpdateRequestCache The page has been saved to the output cache if it was
 configured to do so.

 19. LogRequest The event indicates that the runtime is ready to log the results of the
 request. Logging is guaranteed to execute even if errors occur.

 20. PostLogRequest The request has been logged.

 21. EndRequest This event fires as the final step of the pipeline. At this point, the response
is known and made available to other modules that might add compression or
 encryption, or perform any other manipulation.

Another pair of events can occur during the request, but in a nondeterministic order. They
are PreSendRequestHeaders and PreSendRequestContent. The PreSendRequestHeaders event
informs the HttpApplication object in charge of the request that HTTP headers are about to
be sent. The PreSendRequestContent event tells the HttpApplication object in charge of the
request that the response body is about to be sent. Both of these events normally fire after
EndRequest, but not always. For example, if buffering is turned off, the event gets fired as
soon as some content is going to be sent to the client.

 Chapter 2 The Runtime Environment 49

Speaking of nondeterministic application events, it must be said that a third nondeterministic
event is, of course, Error.

Let’s delve deeper into the mechanics of ASP.NET request processing.

Note Technically, most of the IIS pipeline events are exposed as events of the ASP.NET
HttpApplication class. A significant exception is ExecuteRequestHandler. You find this event in the
IIS messaging pipeline, but you won’t find an easy way to subscribe to it from within ASP.NET
code. Internally, the ASP.NET runtime subscribes to this event to receive notification of when an
ASP.NET request needs to produce its output. This happens using unmanaged code that is not
publicly available to developers. If you want to control how an incoming request is executed by
IIS, you have to resort to Win32 ISAPI filters. If you want to control how an ASP.NET request is
executed, you don’t need the IIS ExecuteRequestHandler event, because a simpler HTTP handler
will do the job.

ASP.NET Request Processing in Classic Pipeline Mode
As shown in Figure 2-4, in Classic pipeline mode an ASP.NET request is handed over to an
ISAPI extension right after IIS has obtained an authentication token for the sender. The
 request life cycle is governed by a static instance of the HttpRuntime class. A single instance
of the HttpRuntime class exists per application, and it’s created when the first request for the
application comes in.

When the HttpRuntime object is commanded to process a request, it performs a number of
initialization tasks, the first of which is the creation of the HTTP context object. As its second
step, the HttpRuntime object sets up an ASP.NET application object to carry out the request.
An ASP.NET application object consists of an instance of a dynamically created class that
 inherits from the system’s HttpApplication class. The HttpApplication-derived class is built
based on the content of the global.asax file.

The HTTP runtime attempts to pick up an HttpApplication object from a pool. If no
HttpApplication object is available, either because the application has not been started yet
or all valid objects are busy, a new HttpApplication is created and added to the pool. The
 selected HttpApplication object is responsible for managing the entire lifetime of the request
it is assigned to. That instance of HttpApplication can be reused only after the request has
been completed.

The HttpRuntime object uses a contracted interface—the IHttpHandler interface—to drive
the behavior of the HttpApplication object. When the request has been processed, the HTTP
runtime finalizes the request and returns control to its ISAPI caller.

ASP.NET Request Processing in Integrated Pipeline Mode
In IIS 7.0 running in Integrated pipeline mode, no explicit handoff of the request from IIS to
ASP.NET ever occurs.

50 Part I The Programming Paradigm

Any managed HTTP modules registered to handle early stages of the request can execute
without first routing the request to the managed runtime of ASP.NET. A managed HTTP
module can be added through the IIS manager and can operate on both managed and
 native requests. Similarly, a managed HTTP handler can be mapped to any resource types
directly from the IIS manager or via the web.config file of the ASP.NET application. Mappings
set directly within the IIS manager are stored in the applicationHost.config file.

In Integrated pipeline mode, all the request life-cycle events I just described are fired
within the IIS space and are in no way specific to an ASP.NET request. In between the
PreRequestHandlerExecute and PostRequestHandlerExecute events, IIS hands an ASP.NET
 request to some code in the ASP.NET runtime environment for actual processing.

Hosted in the IIS worker process, the ASP.NET environment is governed by a new class—the
ApplicationManager class. This class is responsible for creating and managing any needed
AppDomains to run the various ASP.NET applications located in the same pool. During the
initialization, the ApplicationManager class invokes a specific PipelineRuntime object, which
ultimately registers a handler for the ExecuteRequestHandler.

This ASP.NET internal handler is called back by IIS whenever an ASP.NET request needs be
processed. The handler invokes a new static method on the HttpRuntime object that kicks
in to take care of the request notification. The method retrieves the HTTP handler in charge
for the request, prepares the HTTP context for the request, and invokes the HTTP handler’s
 public interface.

What Executes the ASP.NET Request?
Each ASP.NET request is mapped to a special component known as the HTTP handler. The
ASP.NET runtime uses a built-in algorithm to figure out the HTTP handler in charge of a given
ASP.NET request.

In Web Forms, this algorithm is based on the URL of the requested page. You have a different
HTTP handler for each page requested. If you requested, say, page.aspx, the HTTP handler is
a class named ASP.page_aspx that inherits from the code-behind class you specified in your
source code. The first time the request is made this class doesn’t exist in the AppDomain.
If the class does not exist, the source code for the class is obtained by parsing the ASPX
markup and then it’s compiled in memory and loaded directly into the AppDomain.
Successive requests then can be served by the existing instance. (ASP.NET site precompilation
is all about running this process in advance for all pages in a site.)

An HTTP handler is a managed class that implements the IHttpHandler interface, as shown in
the following code snippet. The body of the ProcessRequest method ultimately determines
the response for the request.

public interface IHttpHandler

{

 void ProcessRequest(HttpContext context);

 bool IsReusable { get; }

}

 Chapter 2 The Runtime Environment 51

The well-known System.Web.UI.Page class—the base class for Web Forms pages—is simply
a class that provides a sophisticated implementation of the IHttpHandler interface, which
 basically turns out to be a full implementation of the Page Controller pattern.

For individual requests, or for a logically defined group of requests, within an application
you can define an alternate handler that employs different logic to generate the response.
Ultimately, this is just what ASP.NET MVC does.

As we’ll see later, in ASP.NET MVC the HTTP handler is unique for all requests and decides the
action to take by looking at the characteristics of the request URL.

What’s an HTTP Handler, Anyway?
As mentioned earlier, an HTTP handler is just a managed class that implements the IHttpHandler
interface. More specifically, a synchronous HTTP handler implements the IHttpHandler interface;
an asynchronous HTTP handler, on the other hand, implements the IHttpAsyncHandler
 interface. Because this section is not supposed to provide in-depth coverage of HTTP handlers,
I’ll limit the discussion to tackling synchronous handlers.

If you feel you need richer and more advanced information on HTTP handlers, you can have
a look at Chapter 18 of my earlier book Programming Microsoft ASP.NET 3.5 (Microsoft
Press, 2008).

The IHttpHandler Interface
The IHttpHandler interface defines only two members: ProcessRequest and IsReusable, as
shown in Table 2-1. ProcessRequest is a method, whereas IsReusable is a Boolean property.

TABLE 2-1 Members of the IHttpHandler interface

Member Description

IsReusable This property provides a Boolean value indicating whether the HTTP
runtime can reuse the current instance of the HTTP handler while serving
another request.

ProcessRequest This method processes the HTTP request.

The IsReusable property on the System.Web.UI.Page class—the most common HTTP handler
in ASP.NET—returns false, meaning that a new instance of the HTTP request is needed to
serve each new page request. You typically make IsReusable return false in all situations
where some significant processing is required that depends on the payload of the request.
Handlers used as simple barriers to filter special requests can set IsReusable to true to save
some CPU cycles.

The ProcessRequest method takes the context of the request as the input and ensures that the
request is serviced. In the case of synchronous handlers, when ProcessRequest returns,
the output is ready for forwarding to the client.

52 Part I The Programming Paradigm

A Simple but Effective HTTP Handler
If anything significant is ever going to happen around an HTTP handler, that will surely take
place in the ProcessRequest method. In light of this, the following code is more than enough
to demonstrate the true power of HTTP handlers:

using System.Web;

namespace Samples.Components

{

 public class SimpleHandler : IHttpHandler

 {

 // Override the ProcessRequest method

 public void ProcessRequest(HttpContext context)

 {

 context.Response.Write("<h1>Hello, I'm an HTTP handler</h1>");

 }

 // Override the IsReusable property

 public bool IsReusable

 {

 get { return false; }

 }

 }

}

The difference between this admittedly trivial handler and a much more complex one is all in
the amount of code you put in ProcessRequest and in how you consume the HTTP context.

Registering the HTTP Handler
You need an entry point to be able to call the handler. In this context, an entry point into the
handler’s code is nothing more than an HTTP endpoint—that is, a public URL. The URL must
be a unique name that IIS and the ASP.NET runtime can map to this code. When registered,
the mapping between an HTTP handler and a Web server resource is established through the
web.config file:

<configuration>

 <system.web>

 <httpHandlers>

 <add verb="*"

 path="hello.axd"

 type="Samples.Components.SimpleHandler" />

 </httpHandlers>

 </system.web>

</configuration>

The <httpHandlers> section lists the handlers available for the current application. These
 settings indicate that SimpleHandler is in charge of handling any incoming requests for an
endpoint named hello.axd.

 Chapter 2 The Runtime Environment 53

Note that the endpoint is simply a public resource identifier and doesn’t have to be a physical
resource on the server, such as a file. It doesn’t have to end with the .axd extension, either,
although for this example it does. The endpoint can be any string that the target handler
knows how to process. (This feature of HTTP handlers is another point that helps explain
how it’s possible for ASP.NET Web Forms and ASP.NET MVC to share the same runtime
environment.)

The type attribute in the configuration schema references the class and assembly that
 contains the handler. Its canonical format is type[,assembly]. You omit the assembly
 information if the component is assumed to be in one of the application’s dynamically
 compiled assemblies.

If you invoke the hello.axd URL, you obtain the results shown in Figure 2-6.

FIGuRE 2-6 A sample HTTP handler that answers requests for hello.axd

Note If you’re using a custom extension or a URL format that doesn’t match any of the
 predefined mappings in IIS, you need to edit the metabase manually to map the resource type
to ASP.NET. In IIS 7, with the Integrated pipeline, you don’t need to edit the metabase but can
 simply register the handler in the application’s web.config file under the <system.webServer>
 section, right below the root <configuration> node. Also note that for applications running under
IIS 7 Integrated mode, the section <httpHandlers> under <system.web> is not used. You should
move settings under <handlers> in <system.webServer>.

HTTP Handlers as ASHX Resources
HTTP handlers are not a tool for everybody. They serve a specific purpose: determining the
way a particular resource, or set of resources, is served to the user. You can use handlers to
filter out resources based on run-time conditions. You can use handlers to apply any form
of additional logic to the retrieval of traditional resources, such as pages and images. Finally,
you can use HTTP handlers to apply routing policies and even to serve certain resources in an
asynchronous manner.

54 Part I The Programming Paradigm

For HTTP handlers, the registration step is key.

Registration enables ASP.NET to know about your handler and its purpose. Registration is
required for two practical reasons. First, it serves to ensure that IIS forwards the call to the
correct ASP.NET application. Second, it serves to direct your ASP.NET application to the class
to “handle” the request. To register an HTTP handler, though, you need to modify the web.
config file of the application.

An alternative way to define an HTTP handler is through an .ashx file. The file contains
a special directive, named @WebHandler, that expresses the association between the HTTP
handler endpoint and the class used to implement the functionality. All .ashx files must begin
with a directive like the following one:

<%@ WebHandler Class="Samples.Components.SimpleHandler" %>

When an .ashx endpoint is invoked, ASP.NET parses the source code of the file and figures
out the HTTP handler class to use from the @WebHandler directive. This automation removes
the need to update the web.config file. The actual code for the handler can be found in the
specified class or inline in the .ashx file. If the code is placed inline, you must add a Language
attribute to the @WebHandler directive to instruct the ASP.NET runtime environment about
which compiler to use to generate the dynamic assembly:

<%@ WebHandler Language="C#" Class="Samples.Components.SimpleHandler" %>

namespace Samples.Components

{

 public class SimpleHandler : IHttpHandler

 {

.
 .
 .

 }

}

When .ashx resources are used to implement an HTTP handler, you just deploy the source file
and you’re done.

Note In a nutshell, exposing an HTTP handler via either an AXD or ASHX endpoint doesn’t have
any significant impact on aspects such as performance, usability, and code readability. In both
cases, you need to write an HTTP handler class. If you opt for an ASHX endpoint, you write an
ASHX endpoint file and the handler is automatically visible to the application. If you opt for any
other endpoint (AXD, ASPX, or custom extensions), you also need to tweak the web.config file to
make the handler visible.

 Chapter 2 The Runtime Environment 55

HTTP Handlers in an ASP.NET MVC Application
Note that in a Web Forms application you can easily use any extensions to characterize the
HTTP endpoint for the handler, including the well-known .aspx extension. This doesn’t work
in an ASP.NET MVC application, at least not with the default routing configuration. Try using
the following script to register an HTTP handler:

<httpHandlers>

 <add verb="*"

 path="hello.aspx"

 type="Samples.Components.SimpleHandler" />

</httpHandlers>

It will work as expected in a Web Forms application; on the other hand, it will return a nasty
HTTP 404 error code in the context of an ASP.NET MVC application. Why is this so? And why
is it that handlers registered to .axd and .ashx extensions work just fine?

As we’ll see later in the chapter, ASP.NET MVC applications live behind a routing module that,
when properly instructed by the application configuration, redirects certain ASP.NET requests
to the ASP.NET MVC run-time shell. After it is routed to the ASP.NET MVC run-time shell,
the request must have all the expected characteristics of an ASP.NET MVC request and, in
 particular, it must be bindable to a controller class.

By default, the ASP.NET MVC routing module handles all requests that don’t match an
 existing physical file. It ignores any ASP.NET requests that don’t match an existing server
file. This means that because an ASHX request matches a physical file—the .ashx file you are
 required to write, anyway—that request is handed over to the standard ASP.NET runtime and
served as expected.

When the HTTP handler is bound to an .aspx endpoint, how things go depends on whether
a physical file exists with that name. With regard to the previous example, if a file named
hello.aspx can be located, ASP.NET MVC yields to classic ASP.NET and the request is served as
expected and routed to the HTTP handler. It’s amazing that the content of hello.aspx can be
anything—even empty content. All that matters is whether a physical file exists that matches
the name in the requested endpoint.

If no hello.aspx file can be found on the server, the request for hello.aspx within ASP.NET MVC
fails with HTTP 404, regardless of the accuracy of the web.config script. Because no file match
is found, ASP.NET MVC intercepts the request and attempts to serve it via a controller. In
 doing so, ASP.NET MVC completely bypasses any settings in the web.config file. Unless proper
route information is entered, the ASP.NET MVC run-time shell can’t figure out what controller
is valid and fails. A detailed explanation of what happened can be found in the source of the
error’s HTML page, as shown in Figure 2-7.

56 Part I The Programming Paradigm

FIGuRE 2-7 ASP.NET MVC fails to serve hello.aspx if no such server file exists.

The inner HTTP exception just says, “The controller for path ‘/hello.aspx’ could not be found or
it does not implement IController.” It couldn’t be clearer, could it?

So everything’s clear? Well, not entirely. It still remains to be explained why on earth
a request for an .axd endpoint works just fine even when there’s no such server file. This is
because of the following code, which is located by default in the global.asax.cs file of an
ASP.NET MVC application:

public static void RegisterRoutes(RouteCollection routes)

{

 routes.IgnoreRoute("{resource}.axd/{*pathInfo}");

 . .
 .

}

The code just tells the ASP.NET MVC router to ignore any requests for an AXD resource.

In summary, to successfully define HTTP handlers in an ASP.NET MVC application, you either
register them with an AXD or ASHX endpoint. If you can’t avoid using an ASPX endpoint, just

 Chapter 2 The Runtime Environment 57

make sure you deploy a server file with the same name as the endpoint. Such a file can have
any content and can even be empty.

What’s an HTTP Module, Anyway?
As we’ve just seen, the processing of an ASP.NET request consists of various steps aimed
at identifying the HTTP handler that will actually serve the request. A bunch of ad hoc
 components can hook up the request at any of the prefixed stages and read and write its
content. Such components are HTTP modules.

An HTTP module is a .NET Framework class that implements the IHttpModule interface. The
HTTP modules that filter the raw data within the request are configured on a per-application
basis within the web.config file. All ASP.NET applications, though, inherit a bunch of system
HTTP modules configured in the global web.config file.

Generally speaking, an HTTP module can pre-process and post-process a request, and it
intercepts and handles system events as well as events raised by other modules. The highly
configurable nature of ASP.NET makes it possible for you to also write and register your
own HTTP modules and make them plug into the ASP.NET runtime pipeline, handle system
events, and fire their own events.

The IHttpModule Interface
The IHttpModule interface defines only two methods: Init and Dispose. The Init method
 initializes a module and prepares it to handle requests. At this time, you subscribe to receive
notifications for the events of interest. The Dispose method disposes of the resources (all but
memory!) used by the module. Typical tasks you perform within the Dispose method are
closing database connections or file handles.

The IHttpModule interface has the following signature:

public interface IHttpModule

{

 void Dispose();

 void Init(HttpApplication context);

}

The Init method receives a reference to the HttpApplication object that is serving the request.
You can use this reference to wire up to system events. The HttpApplication object also
 features a property named Context that provides access to the intrinsic properties of the
ASP.NET application. In this way, you gain access to Response, Request, Session, and the like.

Table 2-2 lists the events that HTTP modules can listen to and handle.

58 Part I The Programming Paradigm

TABLE 2-2 HttpApplication events

Event Description

AcquireRequestState,
PostAcquireRequestState

Occurs when the handler that will actually serve the request acquires
the state information associated with the request.

AuthenticateRequest,
PostAuthenticateRequest

Occurs when a security module has established the identity of the
user.

AuthorizeRequest,
PostAuthorizeRequest

Occurs when a security module has verified user authorization.

BeginRequest Occurs as soon as the HTTP pipeline begins to process the request.

Disposed Occurs when the HttpApplication object is disposed of as a result of
a call to Dispose.

EndRequest Occurs as the last event in the HTTP pipeline chain of execution.

Error Occurs when an unhandled exception is thrown.

LogRequest,
PostLogRequest

Occurs when the response has been generated and logging modules
can do their work.
These events are fired only to applications that run in Integrated
 pipeline mode under IIS 7.

MapRequestHandler Occurs when it is about time to set the handler to serve the request.
This event is fired only to applications that run in Integrated pipeline
mode under IIS 7.

PostMapRequestHandler Occurs when the HTTP handler to serve the request has been found.

PostRequestHandlerExecute Occurs when the HTTP handler of choice finishes execution.
The response text has been generated at this point.

PreRequestHandlerExecute Occurs just before the HTTP handler of choice begins to work.

PreSendRequestContent Occurs just before the ASP.NET runtime sends the response text to
the client.

PreSendRequestHeaders Occurs just before the ASP.NET runtime sends HTTP headers to the
client.

ReleaseRequestState,
PostReleaseRequestState

Occurs when the handler releases the state information associated
with the current request.

ResolveRequestCache,
PostResolveRequestCache

Occurs when the ASP.NET runtime resolves the request through the
output cache.

UpdateRequestCache,
PostUpdateRequestCache

Occurs when the ASP.NET runtime stores the response of the current
request in the output cache to be used to serve subsequent requests.

All these events are exposed by the HttpApplication object that an HTTP module receives as
an argument to the Init method.

Wiring Up Events
In a typical HTTP module, most of the business takes place in the Init method and revolves
around wiring up application events. In the Init method, you normally don’t need to do
more than simply register your own event handlers. The Dispose method is, more often than
not, empty. Subsequently, the behavior of the HTTP module is really expressed by the event
 handlers you define.

 Chapter 2 The Runtime Environment 59

The following listing shows the implementation of the Init and Dispose methods for a sample
module that adds a signature at the top and bottom of each served piece of HTML:

public class MarkerModule : IHttpModule

{

 public void Init(HttpApplication app)

 {

 // Register for pipeline events

 app.BeginRequest += new EventHandler(OnBeginRequest);

 app.EndRequest += new EventHandler(OnEndRequest);

 }

 public void Dispose()

 {

 }

 // Event handlers go here

 . .
 .

}

The BeginRequest and EndRequest event handlers have a similar structure. They obtain
a reference to the current HttpApplication object from the sender and get the HTTP context
from there. Next, they work with the Response object to append text or a custom header:

public void OnBeginRequest(object sender, EventArgs e)

{

 HttpApplication app = (HttpApplication) sender;

 HttpContext ctx = app.Context;

 // Possibly more code here

 . .
 .

 // Add custom header to the HTTP response

 ctx.Response.AppendHeader("Author", "DinoE");

 // PageHeaderText is a constant string defined elsewhere

 ctx.Response.Write(PageHeaderText);

}

public void OnEndRequest(object sender, EventArgs e)

{

 // Get access to the HTTP context

 HttpApplication app = (HttpApplication) sender;

 HttpContext ctx = app.Context;

 // Possibly more code here

.
 .
 .

 // Append some custom text

 // PageFooterText is a constant string defined elsewhere

 ctx.Response.Write(PageFooterText);

}

60 Part I The Programming Paradigm

OnBeginRequest writes specified page header text and also adds a custom HTTP header.
OnEndRequest simply appends the page footer. The effect of this HTTP module is visible in
Figure 2-8.

FIGuRE 2-8 A sample HTTP module in action

Important The registered HTTP modules are called to process every incoming request for
the application. However, nothing prevents you from using some logic in any of your event
 handlers to skip work for requests you’re not interested in.

Registering HTTP Modules
You register a new HTTP module by adding an entry to the <httpModules> section of the
configuration file. The overall syntax of the <httpModules> section closely resembles that of
HTTP handlers. To add a new module, you use the <add> node and specify the name and
type attributes. The name attribute contains the public name of the module. If the module
fires custom events, this name is also used as the prefix for building automatic event handlers
in the global.asax file:

<system.web>

 <httpModules>

 <add name="Marker"

 type="Samples.Components.MarkerModule,Samples" />

 </httpModules>

</system.web>

The type attribute is the usual comma-separated string that contains the name of the class
and the related assembly. The configuration settings can be entered into the application’s
configuration file as well as into the global web.config file. In the former case, only requests
within the application are affected; in the latter case, all requests within all applications in the
Web server are processed by the specified module.

The order in which modules are applied depends on the physical order of the modules in
the configuration list. You can also remove a system module and replace it with your own

 Chapter 2 The Runtime Environment 61

that provides similar functionality. In this case, in the application’s web.config file you use the
 <remove> node to drop the default module and then use <add> to insert your own. If you
want to completely redefine the order of HTTP modules for your application, you can clear
all the default modules by using the <clear> node and then re-register them all in the order
you prefer.

These settings apply to applications working under IIS 6 or IIS 7 Classic mode. For applications
working in IIS 7 Integrated mode, you need to move entries under the <modules> section within
<system.webServer>. In Integrated mode, in fact, settings stored under the <httpModules>
 section under <system.web> are not used.

URL Routing
The whole ASP.NET platform originally developed around the idea of serving requests for
physical pages. It turns out that most URLs used within an ASP.NET application are made of
two parts: the path to the physical Web page that contains the logic, and some data stuffed
in the query string to provide parameters. Here’s a typical URL:

http://northwind.com/news.aspx?id=1234

The news.aspx page incorporates any logic required to retrieve, format, and display any given
piece of news. The ID for the specific news to retrieve is provided via a parameter on the
query string.

This approach has worked for a few years, and still works today. The content of the news is
displayed correctly, and everybody is generally happy. In addition, you have just one page to
maintain and you still have a way to identify a particular piece of news via the URL.

Are there any possible issues around the corner?

A possible drawback of this approach is that the real intent of the page might not be clear
to users and, possibly, to search engines as well. To fix this, you need to make the entire URL
friendlier and more readable. But you don’t want to add new Web pages to the application
or a bunch of made-to-measure HTTP handlers.

Original URL Rewriting API
To address the problem, ASP.NET has supported a feature called URL rewriting since its
 inception. At its core, URL rewriting consists of an HTTP module (or a global.asax event
 handler) that hooks up a given request, parses its original URL, and instructs the HTTP
 runtime environment to serve a “possibly related but different” URL. Here’s a quick example:

protected void Application_BeginRequest(object sender, EventArgs e)

{

 // Get the current request context

 HttpContext context = HttpContext.Current;

62 Part I The Programming Paradigm

 // Get the URL to the handler that will physically handle the request

 string newURL = ParseOriginalUrl(context);

 // Overwrite the target URL of the current request

 context.RewritePath(newURL);

}

The RewritePath method of HttpContext lets you change the URL of the current request
on the fly, thus performing a sort of internal redirect. As a result, the user is provided the
 content generated for the URL you set through RewritePath. At the same time, the URL
shown in the address bar remains the originally requested one.

URL rewriting helps you in two ways. It makes it possible for you to use a generic front-end
page such as news.aspx and then redirect to a specific page whose actual URL is read from
a database or any other container. In addition, it also enables you to request user-friendly
URLs to be programmatically mapped to less intuitive, but easier to manage, URLs.

In a nutshell, URL rewriting exists to let you decouple the URL from the physical Web form
that serves the requests.

Note The change of the final URL takes place on the server and, more importantly, within
the context of the same call. RewritePath should be used carefully and mainly from within the
global.asax file. In Web Forms, for example, if you use RewritePath in the context of a postback
event, you can experience some view-state problems.

URL Routing Engine
URL rewriting is a powerful feature, but it’s not free of issues.

The first drawback is that as the API changes the target URL of the request, any postbacks are
directed at the rewritten URL. For example, if you rewrite news.aspx?id=1234 to 1234.aspx, any
postbacks from 1234.aspx are targeted to the same 1234.aspx instead of to the original URL.

This might or might not be a problem for you. For sure, it doesn’t break any page behavior.
At the same time, you’ll likely always want to use the same, original URL as the front end. In
this case, URL rewriting just creates problems.

In addition, the URL rewriting logic is intrinsically monodirectional because it doesn’t offer
any built-in mechanism to go from the original URL to the rewritten URL and then back.

In ASP.NET 3.5 Service Pack 1, Microsoft introduced a new and more effective API for
URL rewriting. Because of its capabilities, the new API got a better name—URL routing.
URL routing is built on top of the URL rewriting API, but it offers a richer and higher-level
 programming model.

Boykma
Text Box
Download from Wow! ebook <www.wowebook.com>

 Chapter 2 The Runtime Environment 63

The URL routing engine is a system-provided HTTP module that wires up the
PostResolveRequestCache event. Essentially, the HTTP module matches the requested URL to
one of the user-defined rewriting rules (known as routes) and finds the HTTP handler that is
due to serve that route. If any HTTP handler is found, it becomes the actual handler for the
current request.

The URL routing maps URLs to HTTP handlers based on some input you provide through
routes and route handlers.

URL Patterns and Routes
The big difference between plain URL rewriting and ASP.NET routing is that with ASP.NET
routing, the URL is not changed when the system begins processing the request but later in
the life cycle. In this way, the runtime environment can perform most of its usual tasks on the
original URL, which maintains a consistent and robust solution.

In addition, a late intervention on the URL also gives developers the big chance of extracting
values from the URL and the request context. In this way, the routing mechanism can be
driven by a set of rewriting rules or patterns. If the original URL matches a particular pattern,
you rewrite it to the associated URL. URL patterns are an external resource and are kept in
one place, which makes the solution more maintainable overall.

The URL patterns that you define are known as routes.

A route contains placeholders that can be filled up with values extracted from the requested
URL. Often referred to as a URL parameter, a placeholder is a name enclosed in curly
 brackets { }. You can have multiple placeholders in a route as long as they are separated
by a constant or delimiter. The forward slash (/) character acts as a delimiter between the
 various parts of the route. Here’s the default route for an ASP.NET MVC application:

{controller}/{action}/{id}

In this case, the sample route contains three placeholders separated by the delimiter. The
route is made of three parts that coincide with the placeholder because no constant text is
used. A URL that matches the preceding route is the following:

/Customers/Edit/ALFKI

The route barely defines a set of rules according to which the routing module decides
 whether or not the incoming request URL should be rewritten. The component that
 ultimately decides how to rewrite the requested URL is another one entirely. Precisely, it is
the route handler.

64 Part I The Programming Paradigm

Route Handlers
The route handler is the object that processes any requests that match a given route. Its sole
purpose in life is returning the HTTP handler that will actually serve any matching request.

Technically speaking, a route handler is a class that implements the IRouteHandler interface.
The interface is defined as shown here:

public interface IRouteHandler

{

 IHttpHandler GetHttpHandler(RequestContext requestContext);

}

Defined in the System.Web.Routing namespace, the RequestContext class encapsulates some
information about an HTTP request that matches a route:

public class RequestContext

{

 public RequestContext(HttpContextBase httpContext, RouteData routeData);

 // Properties

 public HttpContextBase HttpContext { get; set; }

 public RouteData RouteData { get; set; }

}

In particular, the RequestContext class encapsulates the HTTP context of the request
plus any route-specific information such as the Route object itself, URL parameters, and
 constraints. Note that the HttpContextBase class is the ASP.NET MVC abstraction of ASP.NET’s
HttpContext class. I’ll return to the topic of ASP.NET MVC abstractions later in the chapter.

In its GetHttpHandler method, a route handler typically looks at route data to figure out if
any of the information available needs to be passed down to the HTTP handler (for example,
an ASP.NET page) that will handle the request. If this is the case, the route handler adds this
information to the Items collection of the HTTP context. Finally, the route handler obtains an
instance of a class that implements the IHttpHandler interface and returns that.

Mapping URLs to Routes
The ASP.NET URL routing module employs a number of rules when trying to match an
incoming requested URL to a defined route. The most important rule is that routes are
checked in the order they were registered in global.asax. To ensure they are processed in the
right order, you must list them from the most specific to the least specific. In any case, keep in
mind that the search for a matching route always ends at the first match. This means that just
adding a new route at the bottom of the list might not work and might also cause you a bit
of trouble. In addition, be aware that placing a pattern made of a single catch-all placeholder
(for example, {*any}) at the top of the list will make any other patterns—no matter how
specific—pass unnoticed. Beyond order of appearance, other factors affect the process of
matching URLs to routes. One is the set of default values that you might have provided for
a route. Default values are simply values that are automatically assigned to defined

 Chapter 2 The Runtime Environment 65

placeholders in case the URL doesn’t provide specific values. Consider the following
two routes:

{Orders}/{Year}/{Month}

{Orders}/{Year}

If you assign the first route’s default values for both {Year} and {Month}, the second route will
never be evaluated because, thanks to the default values, the first route is always a match
regardless of whether the URL specifies a year and a month.

A trailing forward slash (/) is also a pitfall. For example, “{Orders}/{Year}” and “{Orders}/{Year}/”
are two very different things. One won’t match the other, even though logically, at least from
a user’s perspective, you’d expect them to.

Another factor that influences the selection of the URL-to-route match is the list of
 constraints that you optionally define for a route. A route constraint is a condition that
a given URL parameter must fulfill to make the URL match the route. A constraint is defined
via either regular expressions or objects that implement the IRouteConstraint interface. Here’s
how to add a route in global.asax that specifies default values and constraints:

public static void RegisterRoutes(RouteCollection routes)

{

.
 .
 .

 // Add a new route with default values and constraints

 routes.MapRoute(

 "NewDefault",

 "{controller}/{action}/{id}",

 new { controller = "Home", action = "Index", id = "" },

 new MyConstraint()

);

}

The first argument to the MapRoute method indicates the name of the route. It’s followed
by the URL pattern and two objects. The former object indicates the default values for
the various URL parameters. The latter specifies the route constraint object. A route
 constraint object might look like the one shown in the following code:

public class MyConstraint : IRouteConstraint

{

 public bool Match(HttpContextBase httpContext,

 Route route,

 string parameterName,

 RouteValueDictionary values,

 RouteDirection routeDirection)

 {

 bool result = true;

 if(routeDirection != RouteDirection.IncomingRequest)

 return result;

66 Part I The Programming Paradigm

 if (String.Equals(parameterName, "id", StringComparison.OrdinalIgnoreCase))

 {

 object o = values[parameterName];

 // Apply your logic here

.
 .
 .

 }

 return result;

 }

}

The IRouteConstraint interface counts on a single method—Match—which returns a Boolean
value. The return value indicates whether the request matches the route or not. In the body
of a route constraint object, you first ensure that the parameter being checked is one you
have constraints on, and then you apply any validation logic you have defined.

Note Among the information passed down to the route constraint object, you find
a RouteDirection parameter. It takes values from the RouteDirection enumeration. Feasible values
are IncomingRequest and UrlGeneration. The RouteDirection parameter indicates whether the
constraint check is required because the routing system is processing a request from a client or
because it’s generating a URL from a route definition.

The ASP.NET routing system, in fact, also works bidirectionally and can match an incoming URL
to a route as well as getting you a URL based on a route definition. To generate a URL from a
route definition, you use the GetVirtualPath method on the RouteCollection class and pass it
the request context and route data. More likely, though, you’ll be using the static member
RouteCollection.Routes instead of getting an ad hoc new instance of the RouteCollection class for
invoking only GetVirtualData.

Handling Requests for Physical Files
Another configurable aspect of the routing system that contributes to a successful URL-to-route
matching is whether or not the routing system has to handle requests that match a physical file.

By default, the ASP.NET routing system ignores requests whose URL can be mapped to a file
that physically exists on the server. Note that if the server file exists, the routing system
 ignores the request even if the request matches a route.

If you need to, you can force the routing system to handle all requests by setting the
RouteExistingFiles property of the RouteCollection object to true, as shown here:

// In global.asax.cs

public static void RegisterRoutes(RouteCollection routes)

{

 routes.RouteExistingFiles = true;

 . .
 .

}

 Chapter 2 The Runtime Environment 67

Note that having all requests handled via routing can create some issues in an ASP.NET MVC
application. For example, if you add the preceding code to the global.asax.cs file of a sample
ASP.NET MVC application and run it, you’ll immediately face an HTTP 404 error when
 accessing default.aspx.

Preventing Routing for Defined URLs
The ASP.NET URL routing module gives you maximum freedom to keep certain URLs off the
routing mechanism. You can prevent the routing system from handling certain URLs in two
steps. First, you define a pattern for those URLs and save it to a route. Second, you link that
route to a special route handler—the StopRoutingHandler class.

Any request that belongs to a route managed by a StopRoutingHandler object is processed
as a plain ASP.NET Web Forms endpoint. The following code instructs the routing system to
ignore any .axd requests:

// In global.asax.cs

public static void RegisterRoutes(RouteCollection routes)

{

 routes.IgnoreRoute("{resource}.axd/{*pathInfo}");

 . .
 .

}

The IgnoreRoute method, as well as the MapRoute method we encountered a moment ago,
are extension methods for the RouteCollection class defined in System.Web.Mvc. All that
IgnoreRoute does is associate a StopRoutingHandler route handler to the route built around
the specified URL pattern.

Finally, a little explanation is required for the {*pathInfo} placeholder in the URL. The token
pathInfo simply represents a placeholder for any content following the .axd URL. The asterisk (*),
though, indicates that the last parameter should match the rest of the URL. In other words,
anything that follows the .axd extension goes into the pathInfo parameter. Such parameters are
referred to as catch-all parameters.

The ASP.NET MVC Run-Time Shell
As you learned in Chapter 1, “Goals of ASP.NET MVC and Motivation for Its Development,”
ASP.NET Web Forms and ASP.NET MVC put forth two significantly different programming
models inspired by two distinct patterns—the Page Controller pattern for Web Forms and the
Model2 pattern for ASP.NET MVC. In spite of the different underlying philosophies, though,
the two ASP.NET frameworks share the same runtime environment—the original runtime
environment of ASP.NET Web Forms, which has been around since ASP.NET 1.0, was released
back in 2002.

68 Part I The Programming Paradigm

The inherently extensible and customizable nature of the ASP.NET runtime environment
made it possible to adapt the existing infrastructure to create a new platform that even
 supports a radically different programming model.

The Big Picture
You can customize the ASP.NET runtime environment using made-to-measure HTTP modules
and HTTP handlers that intercept incoming requests at various stages and process specific
requests as appropriate.

ASP.NET MVC is based on an HTTP module that acts as a front controller and forwards any
requests that matches certain criteria to a tailor-made HTTP handler. The MVC HTTP handler
then serves the request by invoking a particular method on a particular controller class.
The return values of the controller are forwarded to the view engine to generate the actual
 response for the client. Figure 2-9 offers an interior view of the ASP.NET runtime environment
for both ASP.NET Web Forms and ASP.NET MVC.

ASP.NET
Web Forms

ASP.NET HTTP runtime on IIS

ASP.NET
MVC

HTTP
modules

ASP.NET
MVC
HTTP

handler

HTTP
handlers

Routing
HTTP

module

ASP.NET HTTP runtime on IIS

HTTP handler
ASP.page1_aspx

CustomersController

Orders Controller

HTTP handler
ASP.page2_aspx

HTML

View

View

page1.aspx

page2.aspx

Customers/ALFKI

Orders/Update/123

FIGuRE 2-9 The runtime environments in Web Forms and ASP.NET MVC

As you can see, the runtime environment of ASP.NET MVC is simply a customized version of
the original ASP.NET runtime environment.

How do you customize the runtime environment? There’s just one possible way of doing that:
using special sections of the web.config file. Let’s then have a look at the web.config file of
a typical ASP.NET MVC application.

 Chapter 2 The Runtime Environment 69

Default Configuration
When Visual Studio creates a new ASP.NET MVC project, it gives you a ready-made web.config
file. The file contains some boilerplate script to link assemblies and namespaces; reference
compilers for dynamically created code; register default providers for membership, user
 profiles, and role management; and configure forms authentication.

The following listing illustrates the parts of the web.config file that are, instead, specific to
ASP.NET MVC. The listing refers to Visual Studio 2010 and ASP.NET MVC 2. Compared to
ASP.NET MVC 1, it looks slimmer because it mostly differs in terms of version numbers:

<configuration>

 . .
 .

 <system.web>

.
 .
 .

 <compilation>

 <assemblies>

 . .
 .

 <add assembly="System.Web.Abstractions, Version=4.0.0.0, ..." />

 <add assembly="System.Web.Routing, Version=4.0.0.0, ..." />

 <add assembly="System.Web.Mvc, Version=2.0.0.0, ..." />

 </assemblies>

 </compilation>

 <httpHandlers>

 . .
 .

 <add verb="*"

 path="*.mvc"

 validate="false"

 type="System.Web.Mvc.MvcHttpHandler" />

 </httpHandlers>

 </system.web>

 <system.webServer>

 <validation validateIntegratedModeConfiguration="false"/>

 <modules runAllManagedModulesForAllRequests="true"/>

 <handlers>

 <remove name="MvcHttpHandler"/>

 <add name="MvcHttpHandler"

 preCondition="integratedMode"

 verb="*"

 path="*.mvc"

 type="System.Web.Mvc.MvcHttpHandler"/>

 </handlers>

 </system.webServer>

</configuration>

70 Part I The Programming Paradigm

The first aspect that catches the eye is that the ASP.NET MVC framework is articulated on
three assemblies, referenced in the <compilation> section and detailed in Table 2-3.

TABLE 2-3 ASP.NET MVC assemblies

Assembly Version Description

System.Web.Abstractions 4.0 Defines base classes for most ASP.NET intrinsic objects
so that fake objects can be created from them for
 testing purposes

System.Web.Mvc 2.0 Defines the core classes that make up the ASP.NET
MVC framework

System.Web.Routing 4.0 Defines the classes for the routing module

In addition, you find an HTTP handler for *.mvc requests. Compared to the web.config
file created by Visual Studio 2008, in Visual Studio 2010 and ASP.NET MVC 2 you will no
 longer find an explicit reference to the URL routing the HTTP module. It is no longer in the
 application’s configuration file, but it has not disappeared. Instead, it has been moved to the
Web-server-level web.config file that you find in the following folder:

%Windows%\Microsoft.NET\Framework\[version]\Config

Also note that in the .NET Framework 4, the UrlRoutingModule class has been moved to
 system.web from system.web.routing as a way to demonstrate that it is part of the whole
ASP.NET platform and not specific to ASP.NET MVC.

The handler for *.mvc requests is added to the default web.config file for convenience and
might be removed in some cases. In particular, you need this handler definition in case
you’re running your application on IIS 6.0 or on a version of IIS 7.0 but it’s configured to run
in Classic pipeline mode. If you’re hosting on IIS 7.0 configured in the default way (that is, in
Integrated pipeline mode), you can remove the *.mvc HTTP handler from anywhere in
web.config.

Let’s summarize the configuration changes required for ASP.NET MVC (and ASP.NET URL
routing) to fully support various versions of the IIS Web server.

ASP.NET MVC and Web Server Compatibility
The default configuration of the runtime environment you get out of the Visual Studio
 project template is optimized for IIS 7.0 and an application hosted using the Integrated
 pipeline mode. In all other cases, some changes are required.

Some of these changes are already taken care of in the web.config file you get from Visual
Studio. (To keep your files clean, however, you might want to ensure that every configuration
setting you have is necessary.)

 Chapter 2 The Runtime Environment 71

Note IIS 7.0 comes with Windows Server 2008, but it can also be installed on client machines
equipped with Windows Vista, except the Home Basic edition. Windows Server 2003 includes IIS 6.0,
but it doesn’t support upgrading IIS 6.0 to IIS 7.0. Finally, Windows Server 2000 comes with IIS 5.0.

When running ASP.NET MVC on IIS 6.0, IIS 5.0, or IIS 7.0 in Classic mode, you end up sending
requests to the server for URLs that don’t have an extension. What happens is that IIS assumes
you are making a request for a virtual directory within the application. As a result, the request
never reaches the routing system and it can’t be served by IIS as well because no such virtual
path exists. An HTTP 404 error is inevitable.

There are basically two ways to solve the routing issue. You can modify the route table to use
file extensions, or you can use a wildcard script map.

The easiest way to get ASP.NET routing to work with older versions and legacy configurations
of IIS is to modify the route table in global.asax. This is a typical approach for hosted scenarios.
Here are the details:

public static void RegisterRoutes(RouteCollection routes)

{

 routes.IgnoreRoute("{resource}.axd/{*pathInfo}");

 // Added an .mvc extension to the URL

 routes.MapRoute(

 "Default",

 "{controller}.mvc/{action}/{id}",

 new { action = "Index", id = "" }

);

 // You also need this new route to handle requests

 // made against the root of the application. For this reason,

 // the URL pattern is just the empty string.

 routes.MapRoute(

 "Root",

 "",

 new { controller = "Home", action = "Index", id = "" }

);

}

With these changes in place, the application will be able to handle URLs such as /customers
.mvc/edit/alfki instead of /customers/edit/alfki. The URL is a bit less clean and elegant because
of the .mvc extension, but at least IIS is now able to route it correctly to ASP.NET MVC.
To make the .mvc extension known to IIS, though, you need to register it. You can do that
manually through the IIS Manager or programmatically via a script named RegisterMvc.wsf,
which is available under the following folder:

C:\Program Files\Microsoft ASP.NET\ASP.NET MVC 2\Scripts

The script is copied when you install ASP.NET MVC 2 or simply when you install Visual
Studio 2010.

72 Part I The Programming Paradigm

Obviously, you need access to the IIS environment to register a new extension such as *.mvc.
If you don’t have access to IIS (for example, you operate in an Internet Service Provider
 scenario), you can replace *.mvc with an existing extension already mapped to ASP.NET—for
example, *.aspx or *.axd.

Note As obvious as it might sound, I should point out that you should also make sure that
 adding an extension to route URL patterns doesn’t break any links within the application.
Checking all of the URLs to verify they now incorporate the extension (whether *.mvc or *.aspx) is
up to you. However, if your links are generated using the HTML helper method Html.ActionLink,
you should not need to make any changes.

Adding a URL extension in some ways makes the magical world of ASP.NET MVC a bit less
magical because URLs are not as clean and human-readable as they can be under IIS 7.0.
If you don’t want to modify the URLs for your ASP.NET MVC application but you still have
 access to the IIS manager, you might want to consider the wildcard script map alternative.

A wildcard script map (shown in Figure 2-10) instructs IIS to route all requests to a given
module—in this case, the ASP.NET ISAPI module. In this way, the URL routing system can
 intercept any requests—including, of course, extensionless requests.

FIGuRE 2-10 Defining a wildcard script map

Setting a wildcard script map causes IIS to intercept every request made to the Web
server, including images, classic ASP, and HTML pages. Make sure you choose this option
 thoughtfully because it might have an impact on the overall performance of the site.

 Chapter 2 The Runtime Environment 73

Special Settings for HTTP Handlers and HTTP Modules
ASP.NET MVC needs the services of the ASP.NET URL routing module we discussed earlier
in the chapter. Note that, although originally developed for ASP.NET MVC, the URL routing
engine reached the rank of an official member of the ASP.NET platform as of ASP.NET 3.5 SP1.
Today, you can use URL routing with both ASP.NET MVC and ASP.NET Web Forms applications,
and the reference to the HTTP routing module has been conveniently moved up to the
machine-level configuration script. This said, you should consider that in ASP.NET Web Forms
the routing module is an optional element; in ASP.NET MVC, on the other hand, it’s an essential
component of the framework.

You might find it necessary also to replicate any settings for HTTP modules and HTTP
 handlers under the <system.webServer> section of the configuration file. This is mandatory
if you are running the application under IIS 7.0 hosted in an application pool configured
for the Integrated pipeline. However, if your application runs under IIS 6.0 or, even though
it’s hosted in IIS 7.0 it uses the Classic pipeline mode, you don’t need a <system.webServer>
 section in the web.config file. In this case, you’re better off dropping the section entirely from
the configuration file. (Visual Studio just adds it for your convenience.)

The settings in the <system.webServer> section are the same ones you find in the <system.web>
section as far as HTTP handlers and HTTP modules are concerned.

Note In the configuration script for ASP.NET MVC 1 applications created under Visual Studio 2008,
you might notice a special HTTP handler mapped to the UrlRouting.axd resource. This line is
required to work around a bug in IIS 7.0 Integrated mode that shows up when routing is active and
an extensionless URL is requested. The bug is fixed in the .NET Framework 4, and the need for the
 special URL has disappeared.

Routing the Request
Given the default configuration of the ASP.NET MVC runtime environment, what happens
exactly when a request knocks at the IIS gate? Figure 2-11 gives you an overall picture of the
various steps involved and how things work differently for different URLs.

In the beginning, all requests directed to an ASP.NET application are, and look, the same—
they are, in the end, plain HTTP packets. In a way, the URL routing module is like the bouncer
at a disco club. Based on received instructions, the bouncer decides who’s let in and who’s
not. The disco club, in this case, is the ASP.NET MVC special processing environment.

The URL routing module intercepts any requests for the application that could not be served
otherwise by IIS. If the URL refers to a physical file, the routing module ignores the request,
unless otherwise configured. The request then falls down to the classic ASP.NET machinery to
be processed as usual in terms of a page handler.

74 Part I The Programming Paradigm

page1.aspx

page2.aspx

Customers/ALFKI

Orders/Update/123

ASP.NET
Web Forms

ASP.NET HTTP runtime on IIS

ASP.NET
MVC

ASP.NET
MVC
HTTP

handler

ASP.NET HTTP runtime on IIS

HTTP handler
ASP . page1_aspx

CustomersController

OrdersController

HTTP handler
ASP . page2_aspx

HTML

View

View

Routing
HTTP

module

FIGuRE 2-11 The role of the routing module in ASP.NET MVC

Otherwise, the URL routing module attempts to match the URL of the request to any of the
defined routes. If no match is found, the request will be served by the standard ASP.NET
runtime.

In the end, only requests that the routing module selects based on route data are allowed to
enjoy the ASP.NET MVC run-time shell. As shown in Figure 2-11, all such requests are routed
to a common HTTP handler that instantiates a controller class and invokes a defined method
on it. Next, the controller method, in turn, selects a view object to generate the actual
response.

This is just the big picture of how the ASP.NET MVC runtime works. I’ll cover request
 processing in more detail in the upcoming “Processing an ASP.NET MVC Request” section.
Before I get there, though, let me tackle a couple of other side topics: mixing Web Forms and
ASP.NET MVC pages in the same application.

Mixing Web Forms and MVC Pages
Because ASP.NET MVC takes advantage of the same runtime environment as classic
ASP.NET Web Forms, mixing together Web Forms pages and ASP.NET MVC pages is definitely
possible.

Because ASP.NET Web Forms pages are clearly based on disk files, the URL routing system
lets them pass and doesn’t route them to the ASP.NET MVC runtime environment. This
 ensures that an ASP.NET MVC application can serve both types of resources.

 Chapter 2 The Runtime Environment 75

I recommend you create a folder in your project and group your .aspx pages below it.
In a way, it’s like having a separate Web Forms project within the root ASP.NET MVC project.
(See Figure 2-12.)

FIGuRE 2-12 A sample project using both Web Forms and MVC pages

Hosting Web Forms pages in an ASP.NET MVC application is possible, but the opposite
doesn’t work. To process ASP.NET MVC extensionless URLs and resolve them in terms of
 controllers and views, you need to tweak the runtime environment and the folder structure
to make the whole application just become a new ASP.NET MVC application!

So you’re back to square one; you can mix Web Forms and MVC pages in an ASP.NET MVC
project, but nothing else.

Processing an ASP.NET MVC Request
After the routing module has matched the incoming requested URL to one of the defined
routes, the ball passes to the route handler component in charge of that route. Each route
can have its own route handler; the default route handler, though, is the MvcRouteHandler
class defined in the System.Web.Mvc namespace.

76 Part I The Programming Paradigm

The MvcRouteHandler Class
As discussed earlier in the chapter, the purpose of a route handler is to determine the
HTTP handler object that will serve the request whose URL matched the route. The
MvcRouteHandler class has a surprisingly neat and clear implementation, as shown here:

public class MvcRouteHandler : IRouteHandler

{

 // Implementation of the IRouteHandler interface

 IHttpHandler IRouteHandler.GetHttpHandler(RequestContext requestContext)

 {

 return this.GetHttpHandler(requestContext);

 }

 // Helper method

 protected virtual IHttpHandler GetHttpHandler(RequestContext requestContext)

 {

 return new MvcHandler(requestContext);

 }

}

It’s straightforward to see that, given the preceding code, any ASP.NET MVC request—that
is, any request that matches an existing route—is served by the same HTTP handler. Let’s dig
out more detail about this handler.

The MvcHandler Class
MvcHandler is ultimately responsible for generating the response for the request being
processed. The MvcHandler class receives information about the ongoing request from the
constructor, as you can see in the implementation of the GetHttpHandler method in the
MvcRouteHandler source code just shown.

Let’s have a look at how the class implements IHttpHandler:

void IHttpHandler.ProcessRequest(HttpContext context)

{

 this.ProcessRequest(context);

}

protected virtual void ProcessRequest(HttpContext context)

{

 // HttpContextWrapper inherits from HttpContextBase

 HttpContextBase ctxBase = new HttpContextWrapper(context);

 this.ProcessRequest(ctxBase);

}

protected internal virtual void ProcessRequest(HttpContextBase ctxBase)

{

.
 .
 .

}

The original HTTP context of the request, as prepared by IIS or the ASP.NET runtime
 environment, is flushed into a more generic container—the HttpContextWrapper class.

 Chapter 2 The Runtime Environment 77

The wrapper HTTP context is then passed to the actual processor of the request—the internal
ProcessRequest method you see in the preceding listing.

Important HttpContextWrapper actually inherits from HttpContextBase, which serves as the
base class for classes that contain HTTP-specific information about an individual HTTP request.
HttpContextBase (and derived classes) plays a key role in ASP.NET MVC. It decouples the ASP.NET
MVC HTTP handler—and more importantly, any invoked controllers—from the ASP.NET native
HttpContext class. Controllers can still receive the same context information, except that now
they get it using a generic container instead of an object whose creation is handled internally by
the ASP.NET runtime environment.

Processing an ASP.NET MVC request consists of parsing the URL to figure out the name of
the controller class to use and creating an instance of it. Here’s some code that illustrates the
behavior:

protected internal virtual void ProcessRequest(HttpContextBase context)

{

 // Add a version header to the response

 AddVersionHeader(context);

 // Get the name of the controller class to use to serve the request

 string name = RequestContext.RouteData.GetRequiredString("controller");

 // Get the currently selected controller factory object

 IControllerFactory factory = ControllerBuilder.GetControllerFactory();

 // Get an instance of the controller class

 IController controller = factory.CreateController(RequestContext, name);

 if (controller == null)

 {

 throw new InvalidOperationException();

 }

 // Order the controller to process the request

 try

 {

 controller.Execute(this.RequestContext);

 }

 finally

 {

 factory.ReleaseController(controller);

 }

}

The controller factory is responsible for the creation of instances of any controller class. The
controller factory is a replaceable system component that implements the IControllerFactory
interface. The default factory is the DefaultControllerFactory class. All this class is using is a bit
of reflection to create an instance of the specified controller type:

controller = (IController) Activator.CreateInstance(controllerType);

78 Part I The Programming Paradigm

The default controller factory uses the default parameterless constructor of the controller
class. To specify extra parameters through the constructor, you need to replace the controller
factory.

After getting the controller instance, the MvcHandler class yields to it by calling the Execute
method. As a result, the controller executes the requested action. In Chapter 4, “Inside
Controllers,” I’ll return to the topic of controllers and actions with many more details.

ASP.NET MVC Wrapper Objects
ASP.NET MVC takes testability very seriously, and it shows in a number of ways. For example,
ASP.NET MVC supplies abstract classes for the various ASP.NET intrinsic objects, including
HttpContext, HttpRequest, and HttpResponse.

Abstract classes come in two forms: a base class and a wrapper class. The base class (that is,
HttpRequestBase) exposes the same interface as the intrinsic object it abstracts. It exposes only
virtual members whose implementation invariably throws an exception. The corresponding
wrapper class (that is, HttpRequestWrapper), instead, provides a concrete implementation of
the base class. Such an implementation basically defines a thin layer around a wrapped object
that can be the ASP.NET intrinsic object or, for testing purposes, a mock object. Here’s an
 excerpt from the source code of the HttpRequestWrapper class:

public class HttpRequestWrapper : HttpRequestBase

{

 // Fields

 private HttpRequest _httpRequest;

 // Ctor

 public HttpRequestWrapper(HttpRequest httpRequest)

 {

 if (httpRequest == null)

 throw new ArgumentNullException("httpRequest");

 this._httpRequest = httpRequest;

 }

 // Public methods

 public override byte[] BinaryRead(int count)

 {

 return this._httpRequest.BinaryRead(count);

 }

.
 .
 .

}

As you can see, any methods in the wrapper class end up invoking the same method on an
underlying object injected via the constructor.

Base and wrapper classes live in the System.Web.Abstractions namespace. Table 2-4 lists all
classes in ASP.NET MVC that abstract native ASP.NET system objects.

 Chapter 2 The Runtime Environment 79

TABLE 2-4 System.Web.Abstractions classes

Class Description

HttpApplicationStateBase,
HttpApplicationStateWrapper

Abstracts the intrinsic Application object

HttpBrowserCapabilitiesBase,
HttpBrowserCapabilitiesWrapper

Abstracts the HttpBrowserCapabilities class that gathers
 information about the capabilities of the browser that has
made the current request

HttpCachePolicyBase,
HttpCachePolicyWrapper

Abstracts the HttpCachePolicy class that sets cache-specific
HTTP headers and controls page output caching

HttpContextBase,
HttpContextWrapper

Abstracts the intrinsic HttpContext object

HttpFileCollectionBase,
HttpFileCollectionWrapper

Abstracts the HttpFileCollection class that controls files
 uploaded by a client

HttpPostedFileBase,
HttpPostedFileWrapper

Abstracts the HttpPostedFile class that controls individual
files uploaded by a client

HttpRequestBase,
HttpRequestWrapper

Abstracts the intrinsic Request object

HttpResponseBase,
HttpResponseWrapper

Abstracts the intrinsic Response object

HttpServerUtilityBase,
HttpServerUtilityWrapper

Abstracts the intrinsic Server object

HttpSessionStateBase,
HttpSessionStateWrapper

Abstracts the intrinsic Session object

HttpStaticObjectsCollectionBase,
HttpStaticObjectsCollectionWrapper

Abstracts the HttpStaticObjectsCollection class that provides
a collection of application-scoped objects

As of ASP.NET 3.5 SP1, these base classes are new classes added to serve the needs of
ASP.NET MVC 1.0. These base classes are completely unknown to ASP.NET, and none of
the ASP.NET intrinsic objects actually inherits from such classes. It wouldn’t be a bad idea,
 however. And I’m fairly sure that this might happen in the near future. A clue is the fact that
the System.Web.Abstractions assembly also shipped with ASP.NET 3.5 SP1; so it is no longer
just an ASP.NET MVC assembly.

For testing purposes, you can easily create a mock object that can be used in lieu of any of
the intrinsic ASP.NET objects referenced in Table 2-4. All you need to do is derive a new class,
as shown next, and use it wherever the base class is accepted:

public class MockHttpContext : HttpContextBase

{

 . .
 .

}

I’ll return to the topics of testing and mock objects in Chapter 11, “Testability and Unit
Testing.”

80 Part I The Programming Paradigm

Summary
ASP.NET MVC was not built entirely from scratch. More precisely, it is a new run-time
shell within the existing ASP.NET run-time machinery. In the new run-time shell, you find
a routing system, a collection of routes, route handlers, and just one standard HTTP handler
 responsible for the processing of any intercepted requests.

The routing system is the key component because it interacts with, and to some extent
 depends on, the host Web server. The routing system ultimately determines whether a given
request has to be processed via ASP.NET MVC or classic ASP.NET. In other words, the routing
system determines whether a given request will enter the new run-time shell of ASP.NET
MVC or live its life outside of it.

The standard project template you get from Visual Studio is configured to make the
 application work just fine in the default scenario (IIS 7.0, Integrated mode), while limiting the
number of required changes in a few critical secondary scenarios, including IIS 6.0 and IIS 7.0
Classic mode.

In this chapter, we dug deep into the runtime environment of ASP.NET and ASP.NET MVC
and unveiled most of the intricacies and architecture. In the next chapter, we’ll shift the focus
back to applications and the programming model in particular. What exactly is the MVC in
the name of the framework? And what does an ASP.NET MVC project look like? Read on!

 81

Chapter 3

The MVC Pattern and Beyond
In mathematics you don’t understand things. You just get used to them.

—John Von Neumann

Aside from a number of technical details in the API, the biggest difference between ASP.NET
Web Forms and ASP.NET MVC is the underlying pattern of the resulting applications. As we
discussed in Chapter 1, “Goals of ASP.NET MVC and Motivation for Its Development,” a classic
ASP.NET application is based on the concept of the page and all that developers do is create
pages by defining their markup and code. The runtime maps a typical .aspx request to a special
component that produces an HTML page. This pattern is known as the Page Controller pattern.

In ASP.NET MVC, on the other hand, the focus is on the action that follows a request.
Every request is therefore mapped to another breed of component that just executes an
 action and obtains results. Processing the request and generating the response for the client
are two distinct steps that involve distinct parts of the runtime environment. The inspiring
 principle of this approach is the association of concerns with at least two distinct actors: one
performing the action and one taking care of the view. The underlying pattern is known as
Model-View-Controller (MVC).

Introduced about 30 years ago, the MVC pattern was not really designed for the special
world of the Web that was still to come. However, given the flexibility of the model, it was
not a big deal to adapt it to the Web only a few years later.

What’s MVC exactly? How does an MVC application behave in detail? How strictly defined is
the pattern?

Born as a relatively loosely defined pattern, MVC has been associated with a number of
 different implementations over years. As a result, there’s some confusion today about
what the real mechanics are that are suggested by the pattern. This chapter starts from
the original formulation of MVC and compares that to the actual (and somewhat different)
 pattern implemented by ASP.NET MVC.

Along the way, I’ll also briefly touch on a couple of other patterns, including Model-View-
Presenter (MVP) and Presentation Model (PM), with the purpose of offering a complete
 overview and helping you gain a better understanding of the ASP.NET MVC design. Finally,
a look at the structure and content of the ASP.NET MVC template project tops off the
chapter.

82 Part I The Programming Paradigm

Note A portion of this chapter contains information about patterns that have been around for
quite a few decades. So if you know enough about MVC and MVP, you might find it bothersome
to read through any further description of them, regardless of the added value a different
 perspective on a known topic can produce. The purpose of this chapter’s tour around the most
popular presentation patterns is just to provide a perspective on the evolution that has taken place
over the years. I’ll be examining the past to discern possible future developments. If you have no
interest in MVC, MVP, Model2, MVVM, and the like, feel free to jump directly to the “ASP.NET MVC
Project Template” section. It’s there where the hot stuff about ASP.NET MVC begins.

The Original MVC Pattern
Regardless of how you design it, any application is driven by the use-cases recognized in the
analysis phase. A use-case describes one scenario in which the user is expected to interact
with the system. For the user to interact with the system, some sort of presentation layer is
required.

The MVC pattern is still a milestone today—30 years after its introduction—because it
 addresses the organization of the whole application and establishes a preferred flow of
information within the system. In this regard, MVC is an application pattern. However, because
nearly all applications (with very few exceptions) are driven by users, an application pattern
inevitably has a deep impact on the presentation layer. It’s not surprising, therefore, that MVC
is often sold as a presentation pattern—and with some justification, indeed. As you’ll see in a
moment, in fact, all of the MVC implementation lives in just one layer—the presentation layer.

MVC Interaction Model
In the earliest software, the presentation layer was made of monolithic, autonomous views
(AVs) displayed to the user. The user interacted with the view and generated some input. The
view captured the input, processed it internally, and updated itself or moved to another view.

An AV is a class that contains display and state information for the view, as well as the full
logic to handle any user actions from start to finish. With such monolithic components, you
have a presentation layer that is hard (if not impossible) to test and that has no separation of
concerns between the user interface (graphics) and presentation logic (code behind).

Note By using the rapid application development (RAD) facilities of a powerful development
environment such as Microsoft Visual Studio 2010 to their fullest, you can quickly, comfortably,
and even inadvertently fall back into the bygone era of autonomous views. In fact, you
might end up having a Web form with a code-behind class that contains almost everything you
need—presentation logic, business logic, and even data access logic. This resulting lack of
 separation of concerns, although not inherent in the ASP.NET Web Forms Page Controller
pattern, is so common and easy to achieve that it prompted the ASP.NET team to offer an
 alternative, and inherently structured, model—the ASP.NET MVC model.

 Chapter 3 The MVC Pattern and Beyond 83

To achieve testability and separation of concerns in the user interface of a generic software
application, the MVC pattern was introduced back in 1979. A more contemporary paper can
be found here: http://st-www.cs.uiuc.edu/users/smarch/st-docs/mvc.html.

The Original Idea
Let’s look at an excerpt from the paper I just referenced:

In the MVC paradigm the user input, the modeling of the external world, and the
visual feedback to the user are explicitly separated and handled by three types of
objects, each specialized for its task.

As you can see, the word paradigm is used in the original paper. Today, instead, we refer to
MVC as a pattern. Is it a pattern or paradigm? Is there really any difference?

The Oxford English Dictionary indicates three synonyms for the word paradigm: pattern,
model, and exemplar. In software terms, though, a pattern is a particular concrete and
 proven solution, whereas a paradigm indicates a family of similar patterns. Or, put another
way, a paradigm indicates the base class from which a variety of concrete design patterns
derive.

In my vision, the original use of the word paradigm means that MVC is a (deliberately?)
 loosely defined pattern. It just shows the way to go, but it leaves the architect a lot of
 freedom when it comes to implementation details. This is probably the reason why so many
variations of MVC exist. This is probably also the reason why different people might give you
different definitions of MVC—sometimes, also slightly incompatible definitions.

The primary goal of MVC is to split the application into distinct pieces—the model, the view,
and the controller. The model refers to the state of the application, wraps the application’s
functionalities, and notifies the view of state changes. The view refers to the generation of
any graphical elements displayed to the user, and it captures and handles any user gestures.
The controller maps user gestures to actions on the model and selects the next view. These
three actors are often referred to as the MVC triad.

Switching to an MVC design brings several benefits.

In the first place, testing the user interface gets significantly simpler and more affordable.
Taking code out of the view makes it easier to change the graphics without altering the
 behavior of the user interface. Taking as much code as possible out of the view also
 encourages code structuring and logical layers. Splitting the presentation layer into distinct
objects lays the groundwork for various teams to work on different parts of the application
simultaneously—for example, designers taking care of the view and developers coding actual
actions.

84 Part I The Programming Paradigm

Note Taking code out of the view? Wasn’t this exactly the main purpose of the code-behind
model in ASP.NET Web Forms? Sure, but as it too often happens, the devil is in the details.
Looking at the preceding text, the keyword to focus on is “encourages.” The classic ASP.NET
code-behind model encourages code structuring and logical layers. It doesn’t force developers to
do just that. In the long run, code-behind classes dangerously started looking a lot like
old-fashioned autonomous views.

I guess that a significant share of this book’s readership is too young to preserve important
memories of the pre-MVC and pre-OOP era, but it was all another programming experience and
all another type of job.

Well, to many of us, it didn’t look like a job either; instead, it looked alluringly like crazy fun.
But at some point, “fun” became established and solidified into a “job.” And the complexity that
came later required new and more powerful tools.

Presenting the Actors
The introduction of MVC represented a quantum leap. The benefits of MVC on software
 architecture have been so deep and profound that they still influence development 30 years
later. (And consider that five years in software constitute a significant era.)

Figure 3-1 summarizes the new age in software architecture that started with the
 introduction of the MVC pattern.

Autonomous View MVC

Graphical elements Graphical elementsView

Controller

Model

Handlers of user gestures
Handlers of

user gestures State

Gateway to middle tier

State & gateway to middle tier

FIGuRE 3-1 The evolution from autonomous views to MVC

In the 1980s, applications of any complexity were essentially based on a monolithic block
of code that structured programming was just trying to break down into more usable and
 reusable pieces. The user interface was therefore a collection of autonomous views, each
managing the screen real estate, capturing user-generated events, and deciding what to do
after. Before MVC, the code was basically developed by nesting calls from the user interface
down to the core of the system.

View, model, and controller are a group of strongly related objects that together participate
in the life of a logical view. A logical view is essentially a sequence of forms displayed to the
user in the context of a use-case.

In my opinion, of the three actors the model is the trickiest to put into perspective.

 Chapter 3 The MVC Pattern and Beyond 85

In the original formulation of MVC, the model is an object designed to hold state and
 contain any data being worked on in the physical view. This was a comprehensive definition
for the applications of 20 and more years ago. Today, it deserves a deeper look.

Modern, multitier applications have a presentation layer made of multiple views, each paired
with a controller and likely with a view-specific model object. But there’s more than this to
consider. In a multitier system, you have a business layer where server-side data is modeled
in some way (typically, by using an entity-relationship model), created from memory in that
format, or loaded in that format from some storage. Is this server-side model the same as the
view-specific model? It depends on the architecture.

Today, in the context of MVC the model is essentially a client-side model of data that is tightly
related (if not coupled) with the view. Triggered by the view, the controller performs some
server tasks and, in doing so, it might touch on the middle tier and the server-side entity
model. Changes induced on the server-side model and the storage must be, at some point,
transferred to the client to be notified to the user. This likely requires either a transfer of data
from the server-side model to the view-specific model or sharing the model between the
 presentation and business layers. If the entity model is being shared between the presentation
and business layers, you might find that the view-specific model and entity model coincide.
Otherwise, they are distinct objects. (See Figure 3-2.)

Presentation

Business

Service Layer

Data Access Layer

Controller M
od

el

Data transfer objects or entity objects or scalar values
to be copied to/from the view-specific model

View

Controller M
od

el

View

En
tit

y
M

od
el

Storage

FIGuRE 3-2 The MVC triad works in the presentation layer.

86 Part I The Programming Paradigm

In MVC, the view is made of interactive controls (such as input fields, buttons, and lists), and
it waits for any user actions. When the user places a command that requires some further
work, the view forwards the input to the controller.

The controller fulfills the request, whatever that means in the application. In a multitier system
(including Web applications), this means interacting with the middle tier, exchanging data,
and loading data into the view-specific model. Next, the view and model talk, and changes
flow into the user interface.

Let’s review in more detail the expectations set for the view and controller.

The View Actor on the Stage
In MVC, the view is as dumb, humble, and passive as possible. (Dumb, humble, and passive
are terms commonly used to describe the role of the view in an MVC scenario.) Translated as
instructions for developing code, it means that the view should care only about painting the
interface to display to users.

Ideally, the view is so simple and logic free as to need virtually no testing. Users (and
 developers before users) can reasonably test the view by simply looking at the pixels on
the screen. Anything else beyond pure graphical rendering should ideally be taken out of
the view and placed in the controller. This includes, for example, the logic that determines
whether a certain button should be enabled or grayed out at some point.

What are the responsibilities of the view in MVC?

As mentioned, the view is responsible for forwarding the call to the controller. How this
 happens largely depends on platform, languages, and development tools. In general,
in a .NET application the view handles its events in the code-behind class and invokes
a particular method on the associated controller class.

As you saw in Chapter 2, “The Runtime Environment,” the forwarding of the user action to
the controller happens automatically, by means of some run-time machinery in the ASP.NET
MVC framework. The view displayed in the browser basically posts to a URL. A server-side
module captures the requests, examines the URL, and figures out which action to execute.

Another key responsibility of the view is rendering.

In an MVC implementation, the controller updates the view-specific model by executing the
triggered action. The model then notifies the view about pending changes on its state that
the view might want to reflect in the user interface. The view reads the model and provides
an updated interface.

The view and the model are bound to the rules of the Observer pattern. In the Observer
 pattern, the subject (in this case, the model) notifies the observer (in this case, the view)
about changes that have occurred. As a result, the view requests the current state from the
model and works with it.

 Chapter 3 The MVC Pattern and Beyond 87

Note The Observer pattern is the pattern behind events and event-driven programming.
The pattern refers to a class that has the ability to notify registered observers of some internal
states. Whenever a particular state is reached, the class loops through the list of registered
observers and notifies each observer of the event. It does that using a contracted observer
 interface. In languages such as Microsoft C# or Visual Basic .NET, the Observer pattern is natively
 implemented and exposed through ad hoc keywords and programming facilities. Consider the
following code:

Button1.Click += new EventHandler(Button1_Click);

When it runs, a new “observer for the Click event” is added to the list maintained by object
Button1. The observer in this case is a delegate—a special class wrapping a class method.
The interface through which the observer and object communicate is the signature of the
 method wrapped by the delegate.

The Controller Actor on the Stage
The controller interacts with the middle tier (typically, the service layer) in a way that is
 coherent with the user action. The controller scripts the endpoints exposed by the middle
tier to achieve the results expected from the user action. The interaction can be as simple as
invoking just one method, or it can require a series of calls and some flow logic.

The controller has no idea of the changes to be imposed on the view by its interaction
with the middle tier. According to the original MVC pattern, the controller is simply not
 responsible for updating the view. The controller doesn’t exist in MVC to separate the view
and model. The controller is not a mediator between the view and the model; rather, it’s the
mediator between the user and the application.

In MVC, the view knows the model directly and the model knows the view through the
Observer relationship. The controller gets input from the view, operates on the middle tier,
and updates the model. Figure 3-3 shows the overall interaction between the three actors.

Controller M
od

el

View

View

Controller

Model

Redirect to
a new MVC

triad

Yes No

Forwards user actions

Observer
relationship

New view?

Invokes a method according
to the user gesture and

updates the model

FIGuRE 3-3 The MVC triad in action

88 Part I The Programming Paradigm

The controller, however, has some responsibilities with regard to the view. In particular,
the controller is responsible for selecting the next view to display to the user. If the user
 action doesn’t require a switch to a different view, the controller simply proceeds with any
 interaction with the model that is required. Otherwise, it just creates a new triad for the new
user interface—new view, new model, and new controller.

Figure 3-4 offers an alternate view of the interaction that takes place between the MVC
 actors. It illustrates the sequence of steps as they occur on a timeline. The notation used,
in fact, is just that of UML sequence diagrams.

User action

Invoke action

Execute the requested task

Notify that changes have occurred

Updated view data

Request changed values

Render view

New view to the user

Controller ModelView

FIGuRE 3-4 The sequence diagram of the original MVC pattern

The word original used in the caption of the figure says it all. It should be noted that the
 diagram in Figure 3-4, as well as most of the discussion here, pertains to the original
 formulation of the MVC pattern.

Today, MVC is mostly associated with Web development and, in particular, with a revisited
and reworked version tailor-made for the Web interaction model. For desktop development
(and to a large extent for rich Internet development too), the original MVC turned out
to be insufficient because of some structural limitations. These limitations led, over time,
to improving the pattern to the Model-View-Presenter model and the Presentation Model
(implemented as MVVM in WPF and Silverlight circles, as noted earlier). Let’s look at the
 required improvements.

 Chapter 3 The MVC Pattern and Beyond 89

Limitations of the MVC Pattern
The advent of MVC made it clear that applications should be designed with separation of
concerns (SoC) in mind. SoC was already a known principle, but MVC put it into practice.
MVC was not perfect, though.

Classic MVC has two big drawbacks. One is that the model needs to communicate to the
view changes of the state—typically, through an Observer relationship. The other is that
the view has intimate knowledge of the model. The view, in fact, refreshes when it gets
a notification that changes have occurred in the model.

Insufficient Testability
In MVC, the controller is a distinct class that gets input through method signatures and
passes any return values down to the model. Overall, the controller is testable. You create an
instance of it, call methods with fake values, and check the return values either from methods
or from the modified state of the model object.

The model has no logic except for the Observer relationship it has with the view. What
about the view? Is it testable?

The view can’t just be completely passive and dumb in MVC. At a minimum, it has to contain
logic for retrieving changes from the model. The view basically reads from the model any
information it needs and displays it through its UI elements. There’s no explicit contract that
states which data the view needs precisely. As a result, the view needs to have its own logic
to select data from the big model and massage it into UI elements. This code can hardly be
taken out of the view—the view is not as passive as it should be. And also, the view depends
to some extent on the underlying platform or UI toolkit being used.

These conditions hinder testability.

Insufficiently Clean Design
The core problem of MVC is the two-way connection established between the view and the
model: view knows model, and model knows view. This two-way connection is necessary
because the controller has not been given enough power and control over the flow of data.
In MVC, the controller is a mediator between the user and the application; its role would be
more effective if it acted as a mediator between the view and model. With the controller
getting input from the view and returning values back to the view, you separate the view and
model and reduce the number of arrows that were shown in Figure 3-3.

Figure 3-5 shows a new possible design of MVC that improves on and cleans up the overall
design by using the controller as a true mediator. You’ll be surprised to see that the schema in
the figure looks nearly the same as what you get in ASP.NET MVC, MVP, and PM.

90 Part I The Programming Paradigm

Controller

Model

View
View

Controller

Model

Redirect to
a new MVC

triad

Yes No

New view? Invoke method

Return values

Middle
Tier

Forwards user
actions

FIGuRE 3-5 A better and cleaner design for MVC

The controller gets the ball from the view, interacts with the middle tier, and then massages
updates for the view into the model. The model gets passed to the view. MVP, PM, MVVM,
and even Model2 are based on this overall schema and differ only in terms of implementation
and design details.

Note In MVP, the model doesn’t really exist unless you want to recognize it in the topmost layer
of the middle tier. As you’ll see later, in MVP the view exposes an interface and that controller
uses that interface to read and write values from and to the view. In PM and MVVM, instead,
the model is incorporated in the controller and the view is tied to it via data-binding. Finally,
the Model2 pattern, and therefore ASP.NET MVC, works nearly the same as what is shown in
Figure 3-5.

The Model2 Pattern
When MVC was formulated, there was no worldwide Web in sight as yet. Later on, in the
mid-1990s, adapting the MVC pattern to the Web interaction model required some extra
work. From this adaptation work, a new MVC-based pattern emerged that is technically
known as Model2 or WebMVC. This pattern inspired the internal architecture of the ASP.NET
MVC framework. The overall schema of Model2 is similar to Figure 3-5.

MVC and the Web
When someone seriously attempted to use MVC to build Web applications, it was clear
beyond any reasonable doubt that MVC was not designed for the Web. At the same time,
though, another key fact emerged: the loose definition of MVC left room for frameworks to
customize MVC to particular areas.

 Chapter 3 The MVC Pattern and Beyond 91

This is exactly the case for Model2.

Model2 is an extremely popular Web-oriented variation of MVC created by Sun
Microsystems to support the building of Web applications using Java Server Pages (JSP).

A Brief History of Model2
In the 1990s, following up on the success of Microsoft Active Server Pages (ASP), Sun
 decided to extend its servlet API to fill the gap existing between Java server programming
and the production of dynamic content for the Web. The effort originated Java Server
Pages (JSP).

In a way, Java servlets are similar to Internet Server Application Programming Interface
(ISAPI) extensions, meaning that a servlet programmer must use the standard output
 console to send out some HTML markup. Done from within a servlet component, the
generation of HTML can’t rely on templates, dynamic scripting, and other facilities like
in ASP. JSP made it possible to embed servlet components and Java code into a surrounding
HTML template.

Blueprints for JSP applications suggest two design models. Originally referred to as Model1
and Model2, these models have never been given a more significant name and are still
 referred to that way in literature.

Model1 is a relatively simple model and is mostly recommended for small applications.
Model2, instead, works for applications of any size of and is the preferred choice for
 enterprise-class applications. The difference between the two models can be reduced to the
following. In Model1, the request processing (including rendering) takes place entirely within
the boundaries of the JSP page. In Model2, separate components take care of processing the
request and rendering results to markup.

Overall, Model1 is fairly similar to classic ASP.NET, where the output is largely determined by
the logic in the page template and external components (ad hoc beans in Java, data source
controls in ASP.NET) take care of downloading data.

In Model2, a servlet component is in charge of the request processing and acts as a controller.
This servlet is responsible for the creation of any objects used by the page (mostly Java
beans) and for redirecting to other JSP pages following the user’s actions. In Model2, there
is no processing logic within the JSP page itself. All the JSP page does is extract dynamic
 content from the servlet and insert that within static templates.

In the end, Model2 is a concrete implementation of the MVC pattern that works over the
Web. The overall diagram is shown in Figure 3-6.

92 Part I The Programming Paradigm

1

2 4

5

Browser

Controller
Interpret request

View
Render markup

Middle tier
Dispatch to business

layer

Controller
Select next view

3

FIGuRE 3-6 A step-by-step diagram for the Model2 pattern

The Model2 pattern owes a lot of its popularity to the Struts framework, part of the
 open-source Jakarta project. (See http://struts.apache.org.) The framework extends the JSP
framework and implements the MVC pattern in full accordance with the Model2 architecture.

Note A good introduction to Model2 can be found on the Java Web site at the following URL:
http://java.sun.com/blueprints/guidelines/designing_enterprise_applications_2e/web-tier/
web-tier5.html.

The Controller Actor over the Web
There are two remarkable differences between the diagram that describes the classic MVC
and the diagram for Model2. Let’s tackle the first difference.

As Figure 3-6 reveals, the first MVC actor that is called on stage is the controller, not the
view. This difference is entirely due to the differences between the desktop platform and the
Web platform. In a Web scenario, the user interface displayed to the end user is plain HTML
 displayed through a client browser. The view for the user doesn’t coincide with the view for
the application.

So the user interacts with his view of the application and triggers commands. The browser
posts these commands to the Web server in the form of HTTP requests. Within the Web
server, an ad hoc module intercepts the request, parses the URL, and decides which controller
to instantiate. The ad hoc module is often referred to as the front controller.

The front controller is a servlet component in a Java Web application and an HTTP module
in ASP.NET MVC. Typically, this component is provided out of the box by some tailor-made
framework, such as Struts in the Java space and MonoRail or ASP.NET MVC in the .NET space.

 Chapter 3 The MVC Pattern and Beyond 93

From the perspective of a Model2 application, the entry point in the triad is the controller.
The controller connects to the middle tier, performs tasks, gets updated data, and loads it
into the model—that is, a representation of the data being worked on in the view.

The View Actor over the Web
The view actor is a simple markup generator. It acts as an engine that gets templates and
fresh data as its input and produces markup for the browser. In the most common scenario,
the view is based on static HTML templates to be filled in with data obtained from the
 controller. In other cases, the view might be based on XML templates and might not return
plain HTML but something else—for example, XAML.

The view is typically based on a rendering engine and is neatly separated from the controller.
The view no longer triggers the controller as it did in classic MVC. Quite the reverse; the
view receives input from the controller, generates the markup, and forwards it directly to the
 output stream toward the browser.

The Model Actor over the Web
Overall, the model actor plays a secondary role in MVC over the Web. The model is simply
the object that the controller uses to pass fresh data to the view. It can be a general-purpose
dictionary of name/value pairs, or it can be a strongly typed object.

The controller works on the model by stuffing values in it that the rendering engine needs to
retrieve. The rendering engine consumes any data in the model object and uses it to fill its
own templates and produce Web content dynamically.

Model2 and ASP.NET MVC
Let’s see how the inspiring principles of Model2 set the groundwork for ASP.NET MVC.
First and foremost, in ASP.NET MVC, you have a front controller that looks at the URL and
 dispatches the request to a controller object. This component is the MVC HTTP handler you
met in Chapter 2. It works for any requests mapped to ASP.NET MVC and triggered by the
route handler.

In ASP.NET MVC, the first member of the MVC triad involved in the processing of a request
is the controller. The view is just a rendering engine, and the model is a plain data container
populated by the controller and consumed by the view.

Figure 3-7 shows a sequence diagram that illustrates the life cycle of an ASP.NET MVC
request.

94 Part I The Programming Paradigm

Browser

POST

new

Invoke action

Invoke method

Lookup view

Fresh data

Render(Fresh data)

HTML response

MVC HTTP
handler Controller Middle tier View

FIGuRE 3-7 The sequence diagram for the ASP.NET MVC architecture

You won’t see any model actor in the figure. However, the model is essentially the container
for the data labeled “Fresh data.” It represents the return values of any method invoked by
the controller on the middle tier. This content is then forwarded to the view engine for the
actual rendering of the HTML response.

In ASP.NET MVC, the model actor might have a fixed and system-provided form—
a dictionary—or it might become a strongly typed graph of objects under the total control
of the developer.

Implementation of the Controller Actor
In ASP.NET MVC, you generally don’t think in terms of pages to build, but rather in terms of
actions to perform and subsequent views to create. The controller is a .NET class that exposes
a bunch of public methods for the MVC HTTP handler to invoke in response to a request.

Arguments for the controller’s method are figured out from the request in a pure REST
 fashion. As you’ll see in great detail in Chapter 4, “Inside Controllers,” the framework does
a good job of guessing your intention and extracting values from either the query string or
the body of the request to match any declared formal parameter on the selected method.
Otherwise, the author of the controller’s method can always extract input data directly from
ASP.NET intrinsic collections such as Request.QueryString and Request.Form.

 Chapter 3 The MVC Pattern and Beyond 95

Any action method on a controller’s method has three responsibilities: performing the action,
populating the model with the results, and triggering the view engine.

Typically, the controller invokes one endpoint in the service layer (the front of the middle tier)
and gets some data back. Next, it massages this data into the model. This could be as easy as
packing objects into a name/value dictionary or mapping values and instances to the properties
of made-to-measure objects. Finally, the controller selects the next view for the user and orders
the view engine to render it using the information stored in the model. Here’s a quick but
 illustrative example of a controller method:

public ActionResult About()

{

 // Populate the model

 this.LoadLocalizableInformationIntoModel();

 // Next view

 string viewName = this.GetNextView("About");

 // Trigger the next view

 return View(viewName);

}

private void LoadLocalizableInformationIntoModel()

{

 // Load data into the built-in model actor.

 // Data is read from a global resource file named globals.resx. The item

 // read in this case is labeled WelcomeMessage.

 ViewData["WelcomeMessage"] = this.HttpContext.GetGlobalResourceObject(

 "globals", "WelcomeMessage");

.
 .
 .

}

private string GetNextView (string currentViewName)

{

 // Possible workflow implemented here to select next view

 // and assign its name to the returned view name variable...

 . .
 .

 // Return next view name

 return currentViewName;

}

The About method in the example doesn’t really invoke any endpoint on the service layer. It’s
limited to extracting some information from the application’s resource file and stuffing that
into the model—the ViewData collection. In addition, the controller selects the next view to
render and orders its rendering via the View method.

Implementation of the View Actor
In this regard, a view is ultimately the response sent to the client browser. A view is identified by
name and has content that, processed by a view engine, produces the response for the browser.

96 Part I The Programming Paradigm

As you’ve seen, a controller method returns an object of type ActionResult. The ActionResult
type is an internal framework type that encapsulates the result of an action method and
 represents the following step after the controller has completed its job. To be precise, the
View method doesn’t actually return ActionResult but a derived type—ViewResult. Here’s the
complete type hierarchy:

public class ViewResult : ViewResultBase

{

 . .
 .

}

public abstract class ViewResultBase : ActionResult

{

.
 .
 .

}

ViewResultBase is the base class used to supply the model to the view and contains most
of the code to trigger the rendering of the view to get some response for the browser.
The ViewResult type customizes its base class by providing the logic to find the view content
to pass to the selected engine.

As it turns out, ViewResult isn’t a simple container of data. Instead, it encapsulates all the
 logic necessary to produce a response for the user. The logic can be broken down into
 various steps.

First, the ViewResult object retrieves the currently selected view engine. Next, it locates the
source for a particular view and passes it to the engine. The view engine mixes the source
code (for example, an HTML template) with any content in the model (for example, the
ViewData collection) and returns a response.

A default view engine is preregistered with any ASP.NET MVC application; however, you can
create your own engines and add them programmatically to the application handling the
Application_Start event in global.asax. If you want to use different view engines for different
controller actions, you then set the view engine directly in the body of the controller
method just before invoking the View method. (I’ll return to the details of this in Chapter 5,
“Inside Views.”)

Note The default view engine is a class named WebFormViewEngine, and it inherits from
an abstract base class—VirtualPathProviderViewEngine. The base class provides a basic
 implementation of the IViewEngine interface that characterizes a view engine. You can use
the VirtualPathProviderViewEngine class as a starting point for building your own view engine,
 especially if your view engine needs to access disk files to read the source of the view. In fact, the
VirtualPathProviderViewEngine class relies on the ASP.NET VirtualPathProvider class to access disk
files on the server. The VirtualPathProviderViewEngine won’t create a view object, but it delegates
that work to any derived class—currently, the sole WebFormViewEngine. As you might guess, this
class retrieves and processes view sources in the form of ASPX and ASCX markup files.

 Chapter 3 The MVC Pattern and Beyond 97

Implementation of the Model Actor
In ASP.NET MVC, the view receives data directly from the controller in a format that can vary
quite a bit. Data can flow into the view through a general-purpose dictionary or through
a strongly typed object model.

In the former case, the ViewData collection is used that is defined on the base controller
class:

public abstract class ControllerBase : MarshalByRefObject, IController

{

 . .
 .

 public ViewDataDictionary ViewData { get; set; }

}

The ViewData property represents a built-in container used for passing data between
a controller and a view. The property is of type ViewDataDictionary. It’s a plain .NET class
that implements the IDictionary interface and looks and behaves like a classic name/value
pair, enumerable dictionary:

public class ViewDataDictionary : IDictionary<string, object>,

 ICollection<KeyValuePair<string, object>>,

 IEnumerable<KeyValuePair<string, object>>,

 IEnumerable

{

.
 .
 .

}

The ViewData property is defined on the ControllerBase class to make it available to any
custom controllers you might have. The idea is that once the controller has executed a given
action, it packs any significant values into the ViewData container to make it flow all the way
through the view.

public class HomeController : Controller

{

 public ActionResult Index()

 {

 this.ViewData["Message"] = "Welcome to ASP.NET MVC!";

 return this.View();

 }

}

A dictionary is a plain collection of name/value pairs with some additional capabilities, such
as sorting and filtering. Any data you store in a dictionary is treated as an object and requires
casting, boxing, or both to be worked on. A dictionary is definitely not something you would
call strongly typed but, at the same time, a dictionary is straightforward to use and works
just fine.

98 Part I The Programming Paradigm

With all the stock dictionary classes available in the .NET Framework, why did the ASP.NET
MVC team assemble yet another dictionary class? The ViewDataDictionary is kind of unique
because it also features a Model property, as shown here:

public class ViewDataDictionary : IDictionary<string, object>,

 ICollection<KeyValuePair<string, object>>,

 IEnumerable<KeyValuePair<string, object>>,

 IEnumerable

{

 public object Model { get; set; }

.
 .
 .

}

The Model property is an alternative and object-oriented way of passing data to the view
object. Instead of fitting flat data into a dictionary, you can shape up a custom object that
faithfully represents the data the view expects. In other words, the Model property represents
your chance of creating an object model that is unique for each view. I’ll return to the model
actor in the context of ASP.NET MVC in Chapter 6, “Inside Models.”

Presentation-Oriented Variations of MVC
The Model2 pattern that inspired the design of ASP.NET MVC and other popular .NET Web
frameworks such as Castle MonoRail is an evolution of the original MVC pattern. As you’ve
seen, the view and model are no longer in touch with one another and the controller is
a mediator between the model and the view. In addition, the view can be represented using
a user-defined object model.

Separating the view from the model is a facet found in another well-known design pattern—the
Model View Presenter (MVP) pattern. Using a strongly typed representation of the view that is, in
some way, incorporated in the controller is the key aspect of yet another pattern that is gaining
recognition these days—the Presentation Model, also known as Model-View-View Model
(MVVM).

Although these two patterns have little to do with the ASP.NET MVC framework, I believe
that a brief summary of what they offer is valuable, if for no other reason than to see the
ASP.NET MVC design from a wider perspective.

If you have no interest in such background topics, you can quickly jump to the next major
section, “The ASP.NET MVC Project Template.” I warmly invite you to read on, though.

The MVP Pattern
MVP is a derivative of MVC aimed at providing a cleaner separation between the view, the
model, and the controller. The pattern was originally developed at Taligent in the 1990s.
The paper you find at http://www.wildcrest.com/Potel/Portfolio/mvp.pdf offers an introduction
to MVP that describes how and why the pattern has been devised.

 Chapter 3 The MVC Pattern and Beyond 99

Starting from the MVC triad, creators of MVP neatly separated the model from the
view/controller pair, which they called presentation. The core of MVP is the strictly regulated
 interaction taking place between the view and the controller. To reinforce the idea of the
controller being the central console of the presentation machinery, in MVP the controller is
renamed to presenter.

MVP Actors at a Glance
Figure 3-8 offers a graphical overview of the MVP pattern. Two fundamental differences
 between MVP and classic MVC stare you in the face.

Presenter

Model

View
View

Presenter

Redirect to
a new MVP

triad

Yes No

New view? Invoke method

Return values

Middle
Tier

Forwards user
actions

Model

FIGuRE 3-8 Actors at a glance in MVP

In MVP, the model has a much less relevant role. There’s neither an explicit model object that
the view connects to (as in classic MVC), nor is there a container that is being explicitly filled
by the presenter.

I like to say that there’s no model at all in MVP; or, if you want to find a place for it,
the model is implicit in the presenter or, better yet, it’s fused to the view.

The key aspect of MVP is that the view exposes a contract through which the presenter
 accesses the portion of the user interface that needs updates after an action. This interface
is technically part of the view implementation—it’s actually an interface implemented by the
view class. However, that interface can also be seen as the background model used to flow
data into and out of the view. Figure 3-8 just reflects this idea.

In MVP, the presenter ignores any UI technology behind the view. All the presenter knows
is the contract exposed by the view. Whether the view is implemented on top of a Web or
desktop application is completely irrelevant from the presenter’s perspective. This makes it
possible to reuse the presenter logic across different applications. It’s possible, therefore, that
the same presenter class for a given view is shared by an ASP.NET Web Forms and Windows
Forms or WPF application.

100 Part I The Programming Paradigm

Note Reusing the presenter logic is definitely possible, but it doesn’t always happen and it
doesn’t always happen for free. It’s a pleasant side effect when you build multiple front ends on
top of the same core application—for example, a Web presentation, a Windows presentation,
and perhaps a mobile presentation. Clearly, “reusing” here means reusing the same assembly.
This reuse can be hindered by binary incompatibilities between involved platforms. For example,
no reuse is possible between a full .NET platform (up to 4.0) and Silverlight (up to version 3.0).

Implementation of the View Actor
With the model playing a secondary role, the core of MVP is the interaction between the
view and the presenter. In MVP, the view is devised to be as thin and passive as possible.
This is the theory, anyway. In the real world, a really passive view can be quite cumbersome
to write and maintain and can add a lot of complexity to the presenter.

If you opt for a passive view, you have an inherently more testable system because the logic
in the view is reduced to an absolute minimum. Subsequently, you run no serious risk at all
by not automating testing on the view. Any piece of code can contain mistakes, but in the
case of a passive view the extreme simplicity of the code allows for only gross and patently
obvious mistakes that can be easily caught without any automated procedure.

The complexity taken out of the view moves to another layer—in this case, the presenter.
A passive view is inevitably coupled with a more complex presenter. Opting for a passive view
is a trade-off between high testability and complexity in the presenter classes. This approach
goes under the name of Passive View (PV). For more information, see http://martinfowler.com/
eaaDev/PassiveScreen.html.

Note Although the driving force for PV remains maximum testability, there’s another benefit
in it that you might want to consider. In a Passive View approach, the view is a raw sequence of
UI elements with no additional data-binding or formatting. The presenter acts directly on the
UI elements and works simply by loading data into them. There’s nothing that happens in the UI
that you can’t spot easily. If there’s something wrong in the UI, it’s right before your eyes. Your
eyes are your test harness.

You can also opt for a more active view that contains some logic as far as data-binding
and data formatting is concerned. Developing a richer view is easier, and it distributes the
 required complexity between the view and the presenter. The view needs to take care of
some synchronization and adaptation work to make input data usable by user-interface
 elements. This approach goes by the name Supervising Controller (SVC). For more information,
see http://martinfowler.com/eaaDev/SupervisingPresenter.html.

In an SVC scenario, the model actor is back on duty. In this case, the presenter might need to
pass aggregated data to the view using the members of the interface. The structure of the

 Chapter 3 The MVC Pattern and Beyond 101

view interface can range from a collection of scalar values that bind directly to UI elements to
a single member that accepts a complex type. The complex type defines an object model for
the view, and the view caches and massages those values into UI elements.

Opting for an SVC view entails making a trade-off between testability and ease (and speed)
of development. Testing an SVC view means testing a piece of user interface with logic and
graphics—not exactly a walk in the park.

How do you test a user interface?

The general idea is to force the view to generate nonvisual output that can be asserted in
the unit test to verify the soundness of the UI. Some tools exist to help with this. For ASP.NET,
an interesting tool is WatiN (which you can see at http://watin.sourceforge.net), which you
might want to consider along with the toolkit unit testing in the Visual Studio 2008 Team Tester
edition. Another non-ASP.NET-specific automatic test tool for applications is IBM’s Rational
Robot. For more information, visit http://www-306.ibm.com/software/awdtools/tester/robot.

Passive View and Supervising Controller are both reasonable approaches to building the view
in an MVP scenario. According to Fowler, you never use MVP; rather, you use either Passive
View or Supervising Controller. Or you use a mix of the two.

Implementation of the Presenter Actor
A common question is, why change the name? Why is it a presenter and not a controller?
The name presenter better conveys the sense of a component that is responsible for handling
user actions; the presenter presents user requests to the back-end system; after that,
 it presents a response to the user.

The presenter sits in between the view and the back-end system; it receives input from the
view and passes commands down to the back-end system. It then gets results and updates
the view through the contracted view interface, optionally stuffing data into a strongly typed
model object.

MVP and Enterprise-Class Applications
MVP is not a pattern that can be implemented quickly. It requires you to define an interface
and a presenter for nearly every view in the application—each Web form in ASP.NET and
each form in Windows.

MVP provides guidance on how to manage heaps of views and, quite obviously, comes at
a cost—the cost of increased complexity in the application code. As you can imagine, these
costs are easier to absorb in large applications than in simple programs. MVP, therefore,
is not just for any application.

102 Part I The Programming Paradigm

In MVP, the view is defined through an interface, and this interface is the only point of
 contact between the system and the view. As an architect, after you’ve abstracted a view
with an interface, you can give developers the green light to start developing presentation
logic without waiting for designers to produce the graphics. After developers have interfaces,
they can start coding and interfaces can be extracted from user stories, if not from full
specifications.

MVP is an important presentation pattern that can be a bit expensive to implement in
 relatively simple applications. On the other hand, MVP shines in enterprise-class applications,
where you really need to reuse as much presentation logic as possible, across multiple
 platforms, and in Software-As-A-Service (SaaS) scenarios.

Cardinality of MVP Triads
In an MVP implementation, is it OK to have one interface and one presenter for each
 supported view? How many application controllers should you have? Just one? Well,
it depends.

Logically speaking, each view is represented by an interface and managed by a presenter.
Take a moderately complex application with dozens of views, and you’ll start feeling the
 burden of MVP on your shoulders quite soon. Microsoft released an ad hoc application block
(the Web Client Software Factory) to smooth out some of these issues at least in the realm
of ASP.NET Web Forms applications. There’s no magic, though—just some designer tools to
create ready-made stubs with views and presenters and a workflow to handle the navigation
logic. MVP is inherently complex and targeted to enterprise applications and to other
 scenarios where complexity is large enough to require precise patterns and policies.

So to get back to the original question about cardinality, most of the time you do have
a one-to-one correspondence between logical views, interfaces, and presenters. A wise use
of base classes and inheritance can certainly lessen the coding burden and save you some
code in certain presenters. On the other hand, a presenter is the presentation logic for
a particular view: if you need two different views, why should you have only one or maybe
three presenters?

As far as application controllers are concerned, things can be a little bit different. An application
controller is the machinery that decides about the next view based on some input, such as the
view name (as in our example) or just a collection of values that denote the state of a view.
If you have a large application with hundreds of views, the application controller that takes care
of all possible transitions for all views can become quite a complex one. For this reason, you
might want to split the navigation logic across multiple controllers at the granularity that you
feel works best for you. You might even want to use an application controller for each
use-case, if use-cases involve several views and complex navigation sequences. Needless to
say, in a presentation layer with multiple navigation controllers, each presenter must receive
a reference to its navigation controller upon instantiation.

 Chapter 3 The MVC Pattern and Beyond 103

Important Although a significant design difference exists between MVP and the original MVC,
MVP and Model2 have a lot in common. The biggest difference remains the interaction between
view and controller—it’s strictly based on a contract in MVP, and it’s kind of free form in Model2.
This said, you can find particular implementations of the patterns that blur this difference
 significantly. In ASP.NET MVC, for instance, you don’t have an interface for the view, but using the
Model property of the ViewData dictionary, you can define an equally strongly typed model for
each view.

Another difference between MVP and Model2 is the driver of the action. In MVP, the action is
triggered by the view; in Model2, the entry point is the controller. Precisely for this reason, in
Model2 (unlike MVP) the runtime environment is responsible for instantiating the controller.

All in all, if you employ Model2 as your definition of MVC, you can hardly see the difference
 between it and MVP. But the difference does exist; and it’s not even small. To grasp it, though,
you must read the full story.

Presentation Model Pattern (Also Known as MVVM)
Developed by Martin Fowler, the Presentation Model (PM) pattern is fully described here:
http://martinfowler.com/eaaDev/PresentationModel.html.

How does PM differ from MVP? Ultimately, it’s not an entirely different type of animal. It’s
correct to consider it yet another variation of MVP that is particularly suited to supporting
a rich and complex user interface. On the Windows platforms, PM works well with user
 interfaces built with Windows Presentation Foundation and Silverlight.

Microsoft recommends it here: http://msdn.microsoft.com/en-us/library/cc707885.aspx.
However, Microsoft also developed a WPF-specific version of PM that goes under the
name of Model-View-ViewModel (MVVM). As I see things, PM and MVVM are not different
things—MVVM is just a WPF-specific implementation of PM. In this book, I’ll consider PM
and MVVM to be the same thing.

PM, like MVP, is based on three actors: the view, the model, and the presenter.

PM Actors at a Glance
In MVP, the view exposes a contract to the presenter and the presenter talks back to the
view through that interface. Binding of the data occurs through the implementation of the
interface in the view class—the Page class in ASP.NET, the Form class in Windows Forms, and
the Window class in WPF. The code that does the binding belongs to the view and can be as
simple as a property assignment or as sophisticated as data-binding.

In PM, the view doesn’t expose any interface, but a data model for the view is incorporated in
the presenter. The view elements are directly bound to properties on the model. In summary,
in PM the view is passive and doesn’t implement any interface. The interface is transformed
into a model class and incorporated in the presenter. See Figure 3-9.

104 Part I The Programming Paradigm

Presenter

Model

View
View

Presenter

Redirect to a
new PM/MVVM

triad

Yes No

New view? Invoke method

Return values

Middle
Tier

Forwards user
actions Data-binding

Model

FIGuRE 3-9 The triad in the Presentation Model pattern

Let’s examine the role played by the actors in a bit more detail.

Implementation of the Model Actor
In PM, the model plays the same role it played in the original formulation of MVC: a container
for any data being worked on in the view. Unlike MVC, though, there’s no bidirectional link
between the view and model in the form of an Observer relationship.

The view is bound to the model and uses any stored information to generate the response.
The actual form of the binding is an implementation detail, but it’s always something close to
data-binding.

The innovative point of PM is that the presenter doesn’t operate on the view. The presenter,
instead, exposes an object model tailor-made for the view and takes care of populating it
with fresh data. The view, in turn, gains access to the presenter’s object model in some way.
In the .NET space, data-binding is a common way in which this is achieved.

Implementation of the View Actor
The view is utterly simple. It’s nothing more than a bunch of UI elements bound to properties
in the model. Any events raised by the user are transmitted to the presenter, handled, and
end up updating the model.

When the user action requires an interaction with the middle tier, the presenter updates
the model with the results it gets. The view is generally owned by the presenter so that the
 presenter, after updating the model, just orders the view to render.

No information is passed to the view. The view holds a reference to the presenter and uses
this reference to gain direct access to the model that is exposed out of the presenter class.
The most boring part of the Presentation Model pattern is writing the synchronization code
that keeps the elements in the view and the properties in the model in sync. Thankfully,
in the .NET Framework data-binding helps a lot.

 Chapter 3 The MVC Pattern and Beyond 105

Note that view/model synchronization is bidirectional. When the user selects an item in
a list, for example, the model should be updated; when an action occurs that modifies the
 selection, the model is updated. PM has become a popular pattern, especially in the WPF
community, because of the great support the WPF platform offers for two-way data-binding.

Implementation of the Presenter Actor
The presenter in the PM pattern accomplishes nearly the same tasks as in MVP and MVC.
It receives events from the view and processes them against the presentation layer, business
logic, or both. In PM, though, the presenter holds a model object and is responsible for filling
it up with any state changes resulting from back-end operations. Finally, the presenter calls
the view to refresh. Figure 3-10 illustrates the sequence.

User action

Invoke action

Update the model

New view served to
the user

Middle tierView

Execute the requested task

Presenter

Change notification

Read fresh data

FIGuRE 3-10 The Presentation Model diagram

In the PM jargon, the presenter is often referred to as the PresentationModel and exposes
public methods as well as all the public properties that form the data model for the view.
The gray area in Figure 3-10 that surrounds a bidirectional exchange between the view and
the presenter is where view/model synchronization code lives. In frameworks that offer great
support for native two-way data-binding, that part of the diagram is implemented according
to the data-binding idiom of the framework. This has led to the creation of a slight variation
of PM for the WPF/Silverlight platform that is known as MVVM.

106 Part I The Programming Paradigm

MVVM in Rich User Interfaces
MVVM is the target pattern for any .NET system with a significant amount of logic (domain
logic, formatting, UI validation) on the presentation layer. The MVVM pattern allows you to
define a specific view model object that contains formatting and UI validation instructions.
At the same time, you place in this “view” object any extra presentation logic and keep
data-binding code as clean as possible.

MVVM is particularly effective in user-interfaces built using WPF and Silverlight because
these platforms provide superb support for (two-way) data-binding. Figure 3-11 illustrates
the idea behind the MVVM pattern in a WPF context.

Forwards user
actions

Invokes a
method
according
to the user
action

View

BLL

Data-binding

ViewModel

Methods

Properties

FIGuRE 3-11 An abstract view of the Model-View-View Model pattern

Using MVVM means that you place your binding stuff in the XAML markup (the view).
The data context of the binding elements is the ViewModel object (the presenter).

User actions are forwarded to the presenter by invoking methods. In WPF, by using ad hoc XAML
features (for example, triggers and commands) you can keep the code-behind class empty.
In Silverlight 3.0 where the support for triggers and commands is insufficient, you’ll use the
code-behind class of the XAML file to handle user actions and invoke methods on the presenter.

The MVVM pattern is particularly suited to WPF and Silverlight development because of the
extremely powerful support for data-binding. Figure 3-12 shows in more detail an MVVM
application in WPF and Silverlight.

Data-binding

Method binding

Sample.xaml

SampleViewModel.cs

BLL

UI
elements

ViewModel
instance

FIGuRE 3-12 Practical schema of an MVVM implementation in WPF and Silverlight

 Chapter 3 The MVC Pattern and Beyond 107

The markup in the XAML file defines all the details of the data-binding. The data context is
an instance of the presenter (ViewModel) class. The code-behind class is extremely thin when
it’s not just empty. Typically, you set the data context to an instance of the view model class
directly in the markup as shown here:

<UserControl x:Class="Samples.MainPage"

 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

 xmlns:data="clr-namespace:MyModel;assembly=MyModel">

 <UserControl.Resources>

 <data:SampleViewModel x:Key="SampleViewModel1" />

 </UserControl.Resources>

 <Grid x:Name="LayoutRoot"

 DataContext="{Binding Source={StaticResource SampleViewModel1}}">

.
 .
 .

 </Grid>

</UserControl>

The code sets a binding between UI elements and properties on the presenter object.
A method binding can be set directly in XAML using commands and triggers. In this case,
the code-behind class is just empty. In Silverlight, this might require adding some code in
the code-behind class to dispatch events to methods on the view model class. The logic to
 interact with the middle tier is buried in the folds of the presenter class.

Important Here at the end of our exploration of patterns for the presentation layer, you can’t
help but notice that the design of ASP.NET MVC doesn’t have much to do with the original
idea of MVC. The overall design is much closer to the Model2 pattern. The tag “MVC” in the
 framework’s name still makes sense, but you’ll soon be off track if you use the behavior of
ASP.NET MVC as your definition and understanding of the MVC pattern.

The ASP.NET MVC Project Template
Visual Studio 2008 and newer versions (for example, Visual Studio 2010) come with a specific
template to create an ASP.NET MVC project. In the end, an ASP.NET MVC application is
an ASP.NET application with some special settings. Some of these tailor-made settings
are stored in the web.config file; others are implicitly assumed from the location of certain
 resources and their names.

Note ASP.NET MVC was introduced as an add-on framework to ASP.NET 3.5 SP1 in March 2009.
Visual Studio 2010 ships with ASP.NET MVC 2, which includes new programming features,
an enhanced project template, and an improved design experience.

108 Part I The Programming Paradigm

Peculiarities of an ASP.NET MVC Project
As you saw in Chapter 2, ASP.NET MVC and classic ASP.NET share the same run-time
 environment, only configured in a slightly different manner. Configuring the run-time
 environment means adding or removing HTTP handlers and modules, registering ad hoc
providers, and linking assemblies and namespaces. Let’s start by briefly summarizing what
you’re required to have in the web.config file. (You saw this in more detail in Chapter 2.)

The web.config File
The beating heart of an ASP.NET MVC application is the URL-routing HTTP module. The module
is registered under the <httpModules> section of the web.config file:

<httpModules>

 <add name="ScriptModule" type="System.Web.Handlers.ScriptModule,

 System.Web.Extensions, Version=3.5.0.0, ..." />

 <add name="UrlRoutingModule" type="System.Web.Routing.UrlRoutingModule,

 System.Web.Routing, Version=3.5.0.0, ..." />

</httpModules>

The ScriptModule node, conversely, is not strictly related to any ASP.NET MVC–specific
 functionalities. It has to do with the implementation of AJAX functionalities.

Note The latest version of the ScriptModule component is defined with the System.Web.Extensions
assembly. The version released with ASP.NET 3.5 Service Pack 1 has a dependency on System.Web
.Abstractions—an assembly originally developed for ASP.NET MVC and then incorporated in the
full ASP.NET platform with Service Pack 1. This means that ScriptModule version 3.5 is compatible
with AJAX functionalities in both ASP.NET Web Forms and ASP.NET MVC.

The <httpHandlers> section also contains a setting that relates to ASP.NET MVC,
as shown here:

<httpHandlers>

.
 .
 .

 <add verb="*" path="*.mvc" validate="false"

 type="System.Web.Mvc.MvcHttpHandler, System.Web.Mvc, Version=1.0.0.0, ..." />

</httpHandlers>

Other settings you encounter in the section are common to any ASP.NET application with
AJAX features enabled.

Both HTTP handlers and HTTP modules settings are replicated in the <system.webServer>
section so that a single web.config file can serve the application whether it’s running in
Integrated Pipeline mode under IIS 7 and in classic mode under either IIS 6 or IIS 7.

 Chapter 3 The MVC Pattern and Beyond 109

An ASP.NET MVC application is also dependent on three specific assemblies: System.Web
.Abstractions, System.Web.Routing, and System.Web.Mvc. A few namespaces are also
 automatically registered to save you from adding a bunch of <@Import …%> directives in
each ASPX view.

<pages>

.
 .
 .

 <namespaces>

 <add namespace="System.Web.Mvc" />

 <add namespace="System.Web.Mvc.Ajax" />

 <add namespace="System.Web.Mvc.Html" />

 <add namespace="System.Web.Routing" />

.
 .
 .

 </namespaces>

</pages>

Unlike modules, handlers, and assemblies, though, namespaces are not essential content for
the web.config file and might not even be required if you switch to a custom view engine.
However, if you switch to a custom view engine (or a custom controller factory), you might
want to edit the web.config file to register your custom assemblies.

The global.asax File
In general, the global.asax file serves a number of purposes as far the initialization and
 configuration of the application is concerned (for example, the definition of handlers for
global events such as HTTP module events and application events).

For an ASP.NET MVC application, the global.asax file also serves an additional purpose:
 defining the format of the URLs being recognized. In summary, at a minimum the global.asax
file of an ASP.NET MVC application configures the URL routing mechanism for the application:

protected void Application_Start()

{

 // Specific to ASP.NET MVC 2

 AreaRegistration.RegisterAllAreas();

 RegisterRoutes(RouteTable.Routes);

}

public static void RegisterRoutes(RouteCollection routes)

{

 // Register your routes here

 routes.MapRoute(...);

 . .
 .

}

110 Part I The Programming Paradigm

You can register routes at any time by simply calling the MapRoute method on the
RouteTable.Routes static collection. However, most of the time you just want to have all of
the routes enabled when the application starts. For this to happen, you need to configure
routing in the Application_Start method of the global.asax class.

Note You might have noticed that in the standard global.asax file the routes are defined in
a public static method named RegisterRoutes, which is then called from within Application_Start.
Why not simply fill up the route table in the body of Application_Start? The obvious answer
is testability. A public static method on the application’s global class makes it possible to test
 certain features of the application with a different route table:

YourMvcApplication.RegisterRoutes(yourTestRoutes);

Probably not a feature you use every day, but one that is good to have.

The default.aspx File
As you go through the default ASP.NET MVC project, you run across an old acquaintance:
the default.aspx file. In a typical Web Forms application, this file represents the common
entry point in the application and the URL to the home page. Because of this, the file is
often a content page (based on a master page) and shows off the main capabilities of the
 application. In other words, you expect to find a lot of content in it. Here, instead, is the
 content of the typical default.aspx file of an ASP.NET MVC application:

< % @ Page Language="C#"

 AutoEventWireup="true"

 CodeBehind="Default.aspx.cs"

 Inherits="MvcApplication1._Default" %>

To add even more thrills, a comment in the ASPX markup strongly recommends that you
don’t delete the file. What about the code-behind class? Here’s what it looks like:

using System.Web;

using System.Web.Mvc;

using System.Web.UI;

namespace MvcApplication1

{

 public partial class _Default : Page

 {

 public void Page_Load(object sender, System.EventArgs e)

 {

 string originalPath = Request.Path;

 HttpContext.Current.RewritePath(Request.ApplicationPath, false);

 IHttpHandler httpHandler = new MvcHttpHandler();

 Chapter 3 The MVC Pattern and Beyond 111

 httpHandler.ProcessRequest(HttpContext.Current);

 HttpContext.Current.RewritePath(originalPath, false);

 }

 }

}

What’s the real purpose of the default.aspx file and its code-behind file?

The role of the file depends on the version of the IIS Web server you’re using. If you are
running the application under IIS 7 in Integrated Pipeline mode, you don’t need default.aspx.
In this case, you can remove that file, and all of its subfiles, from the project. In IIS 7 Integrated
Pipeline mode, a request for the application root (for example, http://yourserver/) is automatically
captured by the routing system and processed in terms of the predefined routes. The same thing
happens if you test the application with the embedded Web server (also known as Cassini) that
comes with Visual Studio 2008 Service Pack 1 and newer versions.

If you’re using an older version of Visual Studio, or if you’re hosting the ASP.NET MVC
 application under IIS 6 or IIS 7 Classic mode, default.aspx is required. In all these cases,
a request for the application root (for example, http://yourserver/) is resolved in terms of
a startup document—default.aspx. In other words, a request for the application root is not
 recognized as an ASP.NET MVC request under older versions of IIS.

For this reason, you need to have a default.aspx in your ASP.NET MVC application to capture the
request. In addition, this default.aspx doesn’t need to be a controller or a view. It just needs to
perform the trick of forcing the ASP.NET MVC runtime to process the request. The code in the
Page_Load event of the default.aspx code-behind class first rewrites the requested path to the
application root “/” and then explicitly processes the request using the MvcHttpHandler class:

// Save the path of the current request (default.aspx)

string originalPath = Request.Path;

// Rewrites the path back to the application root ("/")

HttpContext.Current.RewritePath(Request.ApplicationPath, false);

// Explicitly processes the current request via ASP.NET MVC

IHttpHandler httpHandler = new MvcHttpHandler();

httpHandler.ProcessRequest(HttpContext.Current);

// At this point, the request has been fully processed.

The MVC HTTP handler uses routing information to send the request to the mapped
 controller and view. When ProcessRequest returns, the request has been fully served, but the
control is still in the Page_Load event of default.aspx. The Web Forms life cycle triggered for
default.aspx continues to its natural end without producing any further updates to the output
stream. (Nothing more happens because the default.aspx file is ultimately an empty file with
no controls and no postback code.)

112 Part I The Programming Paradigm

In the end, the user receives any HTML produced by the MVC HTTP handler.
(See Figure 3-13.)

IIS

Original request for
http://yourserver/ Modified

to a startup
default.aspx

Begins the page
life cycle

Page_Load: invoke the
MVC HTTP handler

Ends the page life
cycle (Nothing
more happens)

Response sent
to the user

ASP.NET
Web Forms

Engine

Writes to Response

ASP.NET MVC
Engine

FIGuRE 3-13 The sequence diagram for an application root request in IIS 6.

After processing the request, the code in Page_Load restores the original path so that the
output caching module (if enabled) can correctly process the response.

// Restore the originally requested path for the sake of output caching

HttpContext.Current.RewritePath(originalPath, false);

If your system is running under IIS 7 Integrated Pipeline mode (hold on, this is the default
configuration), you can remove default.aspx from the project. If you keep the file in the
 project, the two following URLs produce the same result:

http://yourserver/

http://yourserver/default.aspx

Obviously, if you remove the default.aspx file from the project, a request for the second URL
will fail.

Convention-over-Configuration
Convention-over-Configuration (CoC) is a development paradigm designed to reduce
the number of decisions made during a project. The paradigm is not a sort of philosophy
that inspires architectural decisions. It’s all about increasing all-around simplicity without
 sacrificing flexibility.

 Chapter 3 The MVC Pattern and Beyond 113

That convention is used over configuration doesn’t mean that you end up getting no
 configuration settings. More simply, you use conventions to indicate a given (and well-defined)
configuration.

A convention is a group of assumptions made about the code. If you follow the convention,
you don’t need to write any configuration information anywhere. If you don’t go by
 convention, you write only what differs in some external file.

CoC is a very helpful paradigm when writing a framework or when used in the context of
a large project that integrates multiple applications.

In ASP.NET MVC, a convention says that any controller class has a trailing “Controller” word.
If you call a controller, say, Home, by convention, the resulting class is HomeController.

For more information about CoC, go to the following Web site: http://softwareengineering
.vazexqi.com/files/pattern.html.

ASP.NET MVC Special Folders
All in all, an ASP.NET MVC application is made of controller classes and views.

A controller class is a container of logically related actions that can be invoked from the
user interface. The signature of a controller class must meet a given standard; however, this
 standard can be modified on a per-application (or even on a per-request) basis by registering
a custom controller factory.

A view is any content that the currently registered view engine can use to produce
a response. By default, the view is an ASPX file that is passed as input to the view engine to
generate HTML. The default view engine is adapted from the Web Forms rendering engine
and, just for this reason, it recognizes and supports the ASPX markup of classic ASP.NET.
By selecting a custom view engine, you no longer need ASPX files and can replace them with
any content that represents valid input for the view engine—for example, XML or XAML
documents.

An ASP.NET MVC project is articulated in a bunch of folders with predefined content.
The Views folder, for instance, contains the source file used by the selected view engine to
generate views. The Controllers folder contains classes for controller components.

Figure 3-14 shows a freshly created ASP.NET MVC project that contains only sample
 controllers and views. Let’s examine the structure of the project template and explore the
content and intended role of each folder.

114 Part I The Programming Paradigm

FIGuRE 3-14 A sample ASP.NET MVC project

The Controllers Folder
As shown in the figure, the Controllers folder contains all the controller classes needed by
the application. In the routes, a controller is identified with a moniker such as Home, Account,
or perhaps Customer. The moniker for a controller is up to you and is definitely part of the
naming convention rules you decide to employ.

As mentioned, the real class behind a controller moniker follows an established convention:
the word Controller trails the moniker, as shown in Figure 3-14. Such a convention is used
by the MVC HTTP handler to resolve an incoming request. From the matching routes, the
handler figures out the controller’s moniker, builds the real class name, and instantiates that.
Here’s the structure of a controller class:

public class HomeController : Controller

{

 public ActionResult Index()

 {

.
 .
 .

 }

 public ActionResult About()

 {

.
 .
 .

 }

}

 Chapter 3 The MVC Pattern and Beyond 115

If you want or need the actual controller class name to deviate from the standard convention,
you install a custom controller factory, as you’ll see in the next chapter.

The number of controller classes that form an ASP.NET MVC application is up to you.
Generally speaking, it results from a number of factors, including the design of URLs,
the logical split of functionalities to implement, your programming preferences, and your
sense of cohesion. In Chapter 4, I’ll explore the intricacies of controller classes in much
 greater detail.

The Views Folder
The Views folder is designed to contain any files used to produce a response for the browser.
A view is always associated with a controller action. For this reason, the Views folder contains
one subfolder for each supported controller. In turn, each controller-specific view folder
 contains any files the currently selected view engine requires to generate the view.

The default view engine is the Web Forms view engine. It works by producing HTML based
on some ASPX templates. In Figure 3-14, under the folder Views/Home you see a couple of
.aspx files: index.aspx and about.aspx.

Those files are never requested directly by the user. However, by convention the ASP.NET
MVC runtime knows that when the Home controller method returns the Index view, the
 content of views/home/index.aspx must be used as a template for generating the actual
markup for the browser.

The name of the view is one of the parameters you pass when you create a view, as shown
here:

public class HomeController : Controller

{

 public ActionResult Index()

 {

 // Perform the action

.
 .
 .

 // Create the view (default name)

 return View();

 }

 public ActionResult About()

 {

 // Perform the action

.
 .
 .

 // Create the view (explicit name)

 return View("About");

 }

}

116 Part I The Programming Paradigm

The conventional name of the view, if not otherwise specified, is the name of the method.
Visual Studio 2008 provides some facilities to deal with views. Figure 3-15 shows the dialog
box displayed when you right-click on the Views node and choose to add a new view.

FIGuRE 3-15 Adding a new view from Visual Studio 2008

The Views folder also contain a subfolder named Shared. The Shared folder conventionally
contains views not specific to a given controller, such as views for error pages, master pages,
and user controls.

The Areas Folder
ASP.NET, although clearly inspired by MonoRail, doesn’t offer in its first version a handy
 functionality that MonoRail developers use fruitfully—areas. So what’s an area in this regard?
Quite simply, it’s a logical container of controllers. Although areas can be simulated in ASP.
NET MVC 1 and in Visual Studio 2008, they are an out-of-the-box feature in ASP.NET MVC 2
and Visual Studio 2010. (See Figure 3-16.)

Each controller must belong to an area, and any application must contain at least one area.
If custom areas are not defined, a global and unnamed area is conventionally assumed.

An area represents a section of the application and is a feature particularly suited to large
Web applications developed using the MVC approach. Ultimately, each area is a sort
of subapplication within the same global project. Each area, in fact, has its own set of
 controllers, views, shared content, models, and so forth and, more importantly, is developed
in isolation.

 Chapter 3 The MVC Pattern and Beyond 117

FIGuRE 3-16 Grouping controllers and views in areas in ASP.NET MVC 2

Looking at the actual implementation, each area is a distinct project. All area projects are
then merged together in the main solution as the application is deployed.

Note The ability to group controllers in areas has been added to version 2 of ASP.NET MVC
by popular demand. However, it’s possible to simulate the same feature in ASP.NET MVC 1 by
 following the instructions (and avoiding the related pitfalls) in the following post: http://haacked
.com/archive/2008/11/04/areas-in-aspnetmvc.aspx.

Other Folders in the Project
A typical ASP.NET MVC project contains a bunch of other folders, as detailed in Table 3-1.

TABLE 3-1 Additional folders of an ASP.NET MVC project

Folder Description

Content Contains global files used in the project, including cascading style sheets (CSS).

Models Contains the various models required by the application, whatever those happen
to be. (More on this in a moment.)

Scripts Contains any script files required within the project.

118 Part I The Programming Paradigm

In addition, you can create additional folders to add more script files and keep them separate
from others. You can add an Image folder or a WebForms folder if you’re mixing Web Forms
and ASP.NET MVC in a single application. The folders discussed in this section are those that
play a particular role in the framework. Other folders can be added as long as you find a role
for them in the application.

What’s the intended content for the Models folder?

ASP.NET MVC doesn’t mandate (or deny) any specific model and framework for representing
your data. You can use Entity Framework, LINQ-to-SQL, or a true Active Record framework
such as Castle ActiveRecord, or you can draw your domain model using NHibernate or
 another commercial Object/Relational Mapper (O/RM) tool.

In any of these cases (likely in 100 percent of the scenarios, though), you end up linking the
model as a separate assembly. And you don’t need a Models folder. As stated earlier in this
chapter, the model in MVC is not necessarily the object model that represents data being
worked on by the application. That was probably true when MVC was introduced, but today
the model is more about the data worked on in the view.

The ideal content for the Models folder, therefore, is any class file that you use to render the
data being passed in and out of a given view—the view-model. I’ll return to this in Chapter 6.

Summary
In spite of the MVC in the name, the ASP.NET MVC framework is about MVC but it’s not
a precise implementation of it. In the end, the ultimate reason for writing this chapter was to
share a bit of knowledge about what MVC really is, how it was devised, and how it evolved.

If asked to share your definition of the MVC pattern, don’t look at how ASP.NET MVC
works to make your points. The behavior of ASP.NET MVC is certainly based on the MVC
 philosophy, but a lot of details are omitted. Why? Because, MVC was designed at a time
when there was no Web around; and the Web is quite a different beast.

Model2 is the variation of the original MVC that works best for the Web, providing at the
same time an alternative paradigm to a classic page controller. If you’re looking for a pattern
that closely describes the behavior of ASP.NET MVC, Model2 is what you’re looking for.

Be honest—when considering an ASP.NET MVC application, all that you take into account are
controllers and views. Where’s the model? The model intended as the application’s object
model or domain model is elsewhere, in a distinct assembly modeled and persisted typically
using ad hoc O/RM tools. The model of MVC is how you read input data from the view and
how you pass updated data back.

 Chapter 3 The MVC Pattern and Beyond 119

ASP.NET MVC today supports the ViewData dictionary and a strongly typed object to
pass data to a view. And more and more, developers are finding ViewData to be obsolete,
 inadequate, and a working-but-dirty solution. However, when you opt for a strongly typed
model, you slowly move toward an MVVM pattern—the same pattern that is getting rave
reviews in Silverlight and WPF circles.

There’s definitely more than just MVC in ASP.NET MVC.

With the upcoming chapters, I’ll take the plunge into the internal mechanics of the
ASP.NET MVC framework and examine its pillars, one after the next. The next chapter is
about controllers.

 121

Part II

The Core of ASP.NET MVC

 123

Chapter 4

Inside Controllers
They always say time changes things, but you actually have to change them
yourself.

—Andy Warhol

The primary goal of the Model-View-Controller (MVC) pattern is to separate as neatly as
 possible the code that generates the graphical interface displayed to users from the code
that manages any user actions. For years, taking code and presentation logic out of the view
has been a task that developers faced on a daily basis.

Nearly every developer and engineer would agree in principle that separation between
a graphical interface and any code behind it is a key design achievement. Everybody sees
the value in it. But recognizing a general principle is one thing; it is quite another to apply
it systematically in everyday work.

For this reason, ASP.NET MVC is a fundamental milestone for ASP.NET developers. It is the
framework now that forces you toward more accurate design. It is the framework now that
mandates separation of concerns, at least between controllers and views.

In this chapter, I’ll review the role of controllers in the economy of an ASP.NET MVC
 application and delve deep into the mechanics of such components while reviewing many
development aspects of them.

Important Before digging deep into the structure, behavior, and design of ASP.NET MVC
 controllers, I’ll take you through a tour of components that play the role of the “controller” in
an ASP.NET MVC scenario. The idea is to demonstrate that adding controller-like components to
ASP.NET Web Forms is not impossible, and a new framework makes it easier to do and especially
smooth and seamless. If you’ve already made up your mind to use ASP.NET MVC and want to go
straight to the point of learning about ASP.NET MVC controllers, feel free to skip this part and
go directly to the section “Anatomy of an ASP.NET MVC Controller” later in the chapter.

The Role of Controllers and the Motivation
for using Them

When you open up a Web project in Microsoft Visual Studio and add a new Web page,
you are presented with a blank designer that needs to be filled with HTML elements and
server controls. In the development of a classic ASP.NET Web Forms page, therefore, you
initially focus on the expected user interface and author an .ASPX markup file by composing

124 Part II The Core of ASP.NET MVC

a bunch of related server controls and literals. Next, you focus on the events raised by any
 components in the user interface, and for each event (for example, button clicks, changes
of selection, and so forth) you code the expected behavior.

Abstractly speaking, a user interface exists to implement a use-case. The term use-case is
generally used to refer to a specific interaction between the user and the system. More
 precisely, a use-case is one of the numerous Unified Modeling Language (UML) diagrams
and describes the interaction taking place between two actors, including users and the
 system itself. From a design perspective, a unique action corresponds to every interaction
between the system and user.

The trigger of this unique action is an event fired by any of the user interface visual elements.
For example, when the user clicks a button, an event is fired to trigger the expected use-case.
How would you handle this in an ASP.NET Web Forms page?

You just write an event handler in the code-behind class for the ASP.NET form. Invoked
over a postback request, this event handler ends up acting as the orchestrator of any logic
 required for the use-case.

At the very end of the day, you keep the user interface definition distinct from any attached
presentation logic. Even better, code for the user interface and for the presentation logic live
in distinct, but related, files. Could you ask for anything more? Well, you should.

Beyond the Code-Behind Approach
In the beginning of ASP.NET, the code-behind approach seemed to be a very
 well- architected solution because it guarantees physical separation between user-interface
elements and the presentation logic. The physical separation of the user-interface definition
and related code was definitely a step forward from the Active Server Pages, script-driven
programming environment.

However, the code-behind approach is only a good first step. Other, and more important,
steps are left to savvy developers.

So what are these steps? And, subsequently, what are the main drawbacks of the
 code-behind model?

Limited Code Visibility and Control
In a code-behind class, you basically write handlers only for user-interface events such as
button clicks, selection changes, and text editing. All these event handlers are methods
 buried in the code-behind class. They are invoked in response to user-interface events, which
in turn result from the ASP.NET run-time processing of postback HTTP requests.

 Chapter 4 Inside Controllers 125

Any method in a code-behind class is hardly visible to surrounding application code. Let’s
consider a sample code-behind class with a button click event handler:

public partial class WebForm1 : System.Web.UI.Page

{

 protected void Page_Load(object sender, EventArgs e)

 {

 }

 protected void Button1_Click(object sender, EventArgs e)

 {

 Label1.Text = "Clicked today at " + DateTime.Now.ToString();

 }

}

By default, any event handler in the class is marked as a protected member, which clearly
means that only derived classes can call it. This is not the point, however. Let’s suppose you
edit the source code just shown to make the Button1_Click method public. I would still say
what I did earlier: the method is hardly visible outside the class. As it is implemented in the
 preceding code snippet, you can simply call it from outside the class using the following code:

Button1_Click(null, EventArgs.Empty);

In more realistic scenarios, you might have to exercise some control over the method
 invocation. For this to happen, it would be nice if the method could provide a simple
 signature that doesn’t force you to package arguments into a particular data structure.

Passing ad hoc parameters to Button1_Click is not impossible, but it’s not immediate and not
especially slick, either.

In addition, the ability to observe the state of the page class from outside is not something
you get out of the box. You can write your event handlers in a way that favors visibility, but
that’s just not what the ASP.NET programming model spurs you on to do.

But what would be an external environment from which you might want to call such a
 method? Well, it could be, for instance, a unit test.

Limited Testability
When it comes to testability, two attributes of the code assume special importance: visibility
and control. They are defined as follows.

The attribute of visibility indicates the ability to observe the current state of the method
 under test and any output it can produce. The attribute of control, on the other hand, refers
to the degree to which the code allows testers to apply fixed input data to the method
under test.

126 Part II The Core of ASP.NET MVC

If testers have a way to programmatically observe a given behavior, they can easily test it
against expected and incorrect values. That’s why visibility does matter. Furthermore, any
piece of software runs according to a virtual contract that includes preconditions. The easier
you can configure preconditions, the easier you can write effective tests.

Testability can hardly apply to event handlers as written by default in a code-behind
class. As a result, with the code-behind model you get some minimal separation between
 user-interface visuals and presentation logic. This separation is mostly physical as code is
spread over two distinct files—markup and code.

You won’t really get the much expected separation of concerns (SoC) between the process
of calculating output values from input data and the process of generating a new HTML view
based on freshly calculated data. The process is kind of hard-coded and based on an overall
rendering algorithm with some placeholders interspersed for processing logic (for example,
postbacks). The inherent level of testability of an ASP.NET Web Forms–based page is not
 really very high. And, moreover, it’s not as high as today’s applications generally require.

Tightly Coupled to Event Handlers
The code-behind model mandates that you have a Page-derived class to act as the
 outermost container of any presentation code you might have. Such a code-behind class
consists of a collection of event handlers that reply to page and control events. Each event
handler has its own fixed signature and is invoked according to a protocol that you, as
a developer, do not control.

In ASP.NET Web Forms, an event handler is invoked during the processing of a postback
 request. When a postback request arrives, the ASP.NET runtime environment determines
the ID of the HTML element that originated the postback. If a server control exists with
a matching ID, the runtime checks whether the control is equipped for handling postback
events. In particular, the runtime checks whether the control class implements the
IPostBackEventHandler interface:

public interface IPostBackEventHandler

{

 void RaisePostBackEvent(string eventArgument);

}

If this is the case, the runtime invokes the RaisePostBackEvent method as defined on the
 posting control. Take a look at the following pseudo-code that closely follows the behavior
of the RaisePostBackEvent method on the ASP.NET Button class:

protected virtual void RaisePostBackEvent(string eventArgument)

{

.
 .
 .

 this.OnClick(EventArgs.Empty);

 . .
 .

}

 Chapter 4 Inside Controllers 127

protected virtual void OnClick(EventArgs e)

{

 // Retrieve the handler for the Click event

 EventHandler handler = FindHandlerForEventClick();

 // Call it

 if (handler != null)

 {

 handler(this, e);

 }

}

In Web Forms, the code in the handler of the postback event is ultimately the code
 responsible for processing the request. This central piece of code is always invoked through
an event-based mechanism that naturally leads developers toward stuffing all the code
in the handler without further (and often due) layering and without even thinking of SoC.

Further Layering Is Up to You
If you take it literally, the code-behind model doesn’t really preclude SoC and the building
of multiple layers of code in your ASP.NET Web Forms pages. Nothing prevents you from
 splitting any code that logically belongs to a postback handler across multiple user-defined
layers. Your click event handler and the surrounding class, for instance, might look like this:

public partial class WebForm1 : System.Web.UI.Page, IWebForm1_View

{

 WebForm1_Controller _controller;

 protected void Page_Load(object sender, EventArgs e)

 {

 _controller = new WebForm1_Controller(this);

 }

 protected void Button1_Click(object sender, EventArgs e)

 {

 _controller.SetLabel();

 }

 public string IWebForm1_View.LabelText

 {

 get { return Label1.Text; }

 set { Label1.Text = value; }

 }

}

public class WebForm1_Controller : SomeBaseController

{

 IWebForm1_View _view;

 public WebForm1_Controller(IWebForm1_View view)

 {

 _view = view;

 }

128 Part II The Core of ASP.NET MVC

 public void SetLabel()

 {

 _view.LabelText = "Clicked today at " + DateTime.Now.ToString();

 }

}

The controller class is loosely coupled to the host Web page through an interface. Nothing
in the controller class requires ASP.NET to be tested. The controller class is fully reusable,
as long as there’s a scenario where you can really reuse it. Finally, the controller class can
 undergo a reasonable number of changes without any serious risks of breaking related code.

As you can see, you can add as many layers as you need and want in a Web Forms solution.
And this is possible because of the open characteristics of the code-behind model.

However, you must be a disciplined (often, a self-disciplined) developer to get to this point.
And, let’s face it, this assumes you’re not in a hurry.

Introducing Controllers
As you saw in Chapter 3, “The MVC Pattern and Beyond,” separation of concerns is an old
principle of software development that sets the foundation of well-designed and easy-to-test
software. In a Web scenario, there are two primary concerns that a developer would ideally
keep separate: how to process the request and how to generate the subsequent view.

A third concern is how to achieve both previous results in a way that smoothes out the
 testing process or, at a minimum, doesn’t further hinder it.

Controllers in ASP.NET Web Forms
Abstractly speaking, the controller is a component that deals with the performance of any
business-related tasks triggered within the page. A controller is invoked in response to some
user action and likely needs some input data to do its job. Which other components will take
care of passing data down to the controller?

In an ASP.NET Web Forms scenario, only the event handler can collect input data from the
server controls and package it for the controller to proceed.

protected void Button1_Click(object sender, EventArgs e)

{

 // Collect input data for the controller.

 // Establish direct access to the properties of server controls.

 object param1 = ...;

 object param2 = ...;

 // Pass data down to the controller explicitly

 object results = _controller.PerformTask(param1, param2);

 // Use return values to refresh the view

 Label1.Text = results.NewTextForLabel1;

 :

}

 Chapter 4 Inside Controllers 129

The controller receives plain data that the code-behind class retrieves. In this scenario, the
code-behind class ends up being tightly coupled to the details of the user interface. This
is acceptable as long as it allows you to move much of the code out to a distinct class.

Views in ASP.NET Web Forms
What about any return values you might get from the pseudo-method PerformTask that was
just shown? Those values, which result from any calculation triggered by the request, serve
to refresh the view. Again, the code-behind class takes care of that.

Although a controller component can be quickly segregated from the host page, isolating
the view subsystem from the rest of the code-behind page is quite a different matter. In Web
Forms, the HTML in the view is mostly generated by server controls. Server controls, in turn,
are easily controlled from the code-behind class.

How can you take the code that updates the view out of the code-behind class?

The simple answer is that there’s no simple way to do that. A possible approach entails you
wrapping the code that accesses server controls in a distinct command class and invoking
a method on it, as shown here:

protected void Button1_Click(object sender, EventArgs e)

{

 // Collect input data for the controller.

 // Establish direct access to the properties of server controls.

 object param1 = ...;

 object param2 = ...;

 // Pass data down to the controller explicitly

 object results = _controller.PerformTask(param1, param2);

 // Use return values to refresh the view

 WebForm1_ViewEngine generator = new WebForm1_ViewEngine();

 generator.Render(results);

 :

}

To gain access to server controls, the pseudo-class WebForm1_ViewEngine must either inherit
from the code-behind class or receive a pointer to that class. The benefits deriving from the
former approach are fairly limited. You still have a dependency between the code-behind
class and a new class—the bottom line is that you just add some overhead.

Injecting a reference to the code-behind class is a much better option. However, to gain
enough separation from the context, it must be based on an interface that abstracts away
the details of the Web page. I just showed the skeleton of this solution earlier in the “Further
Layering Is Up to You” section.

130 Part II The Core of ASP.NET MVC

Note Patternwise, the solution hinted at in the “Further Layering Is Up to You” section is
a simple but effective implementation of the popular Model-View-Presenter (MVP) pattern that
we covered in Chapter 3.

Web Forms Views and Controllers Are Mostly About Overhead
The key consideration is that ASP.NET Web Forms certainly does let you add layers to segregate
the logic behind a given request and the logic required to refresh the current view. The cleanest
and most effective approach to achieve this goal is to use the Model-View-Presenter (MVP)
pattern.

However, because of the overall architecture of Web Forms request processing, any form of
separation of concerns results in extra work and overhead. Most of the time, this overhead
is something you would happily trade for increased maintainability and testability. Even
if extra overhead is clearly required, the side benefits are much more valuable in the context
of complex, line-of-business applications.

Figure 4-1 shows where the overhead lies.

Browser

IIS

ASP.NET HTTP Runtime

(Mapped)
Page HTTP Handler

Page LifeCycle
(Preliminaries)

Page LifeCycle
(Finalization)

Event
Handler

Postback Event

Controller

View

Response Output Stream

Web
Forms

FIGuRE 4-1 Where SoC applies in a Web Forms solution

 Chapter 4 Inside Controllers 131

Web Forms is built around a model that proceeds, step by step, from the parsing of the
 incoming request to the generation of HTML based on an ASPX page template. To change
this way of working, you have two options, one of which is quite radical.

You can simply add SoC within the handler of the postback event, as shown in the figure and
discussed in earlier code snippets. Using this approach, you don’t cut off any of the built-in
infrastructure, and instead just buy extra layers of code for the purpose of testability and
maintainability. The approach delivers you a better solution from a design perspective, but it
doesn’t create any new architectural points.

You fix things nicely; you don’t rationalize the architecture of your Web pages. This is why the
second, more radical option—ASP.NET MVC—is here.

Testing in ASP.NET Web Forms
Just as with SoC, automated testing is definitely a feature you can choose to add on top of
Web Forms pages, but it’s not especially easy to attain.

Testing a Web page means being able to send it a controlled set of values and observe its
state during the processing. You determine whether the test passed by looking at the output.

The final output of a Web page is pure HTML—that is, a potentially long string and not
 necessarily one with a unique representation of content. Testing is easier if you can define in
a more formal way the expected output of the page.

A successful approach consists of abstracting the view to a set of values that the controller is
responsible for producing. You then make the (reasonable) assumption that if the view data is
correct, the view will render as expected. (See Figure 4-2.)

ASPX
template

Code to be tested
in an automated way

Code tested “visually”
by poking around

Computed
values

Controller class

View class

Computed values

FIGuRE 4-2 A testing scenario for Web Forms pages

You visually test the ASPX page and ensure that any given server controls are correctly bound
to a specific member of the externally received collection of values. This code is not hard to
test—either it works or it contains bugs that can be fixed quickly. From here, you make the
assumption that if the view class receives correct data, it will produce the expected HTML.

132 Part II The Core of ASP.NET MVC

You then use automated tests to check the controller class and verify it returns expected
 values based on received input.

The great news is that you no longer need to check HTML. The bad news, conversely, is
that to get to this point you need to architect an MVP-like solution for each Web Forms
page.

The bottom line is that if you’re looking for SoC and testability, Web Forms is not necessarily
the optimal solution. It can certainly be bent to achieve SoC and testability, but that doesn’t
spring naturally out of the architecture. Hence, be ready to make trade-offs between design
improvements and overhead.

ASP.NET MVC is a different thing. Let’s briefly review the mechanics of controllers and views
in ASP.NET MVC, before taking the plunge into the implementation of controllers.

Note In Figure 4-2, the box labeled “View class” symbolizes a traditional code-behind class
that implements a user-defined interface. The interface is page specific and contains the list
of values the page depends on for rendering. The simplification of the relationships between
 abstract entities such as controllers and views is a big advantage of using the ASP.NET MVC
framework.

Mechanics of Controllers in ASP.NET MVC
In Chapter 2, “The Runtime Environment,” I covered in detail the internal architecture of the
runtime environment of ASP.NET MVC applications. However, I’m sure you’ll find it useful to
briefly revisit those details to see the different perspective of SoC and testability that you get
when using ASP.NET MVC instead of Web Forms.

Processing HTTP Requests
In an ASP.NET MVC application, any request that hits the Web server is intercepted by the
routing module and dispatched to a centralized HTTP handler—the MVC HTTP handler.
The handler, in turn, looks at the content of the request (specifically, the URL format) and
 figures out the controller to use. This sequence is exemplified in Figure 4-3.

Customers/ALFKI

:

Orders/Update/123

CustomersController

OrdersController
View

HTM
L

ViewRouting
HTTP

module

ASP.NET
MVC
HTTP
handler

ASP.NET HTTP runtime on IIS

FIGuRE 4-3 A request’s path to its controller

 Chapter 4 Inside Controllers 133

It turns out that in ASP.NET MVC there’s no page life cycle at all. The HTTP handler that takes
care of the request is unique and not page specific. The overall scheme looks more like that
of a desktop application where the user triggers some action, some action is performed, and
then the user interface is updated.

You’ll certainly agree that such a model has two huge advantages over Web Forms. First,
it more naturally fulfills the need for SoC and testability. Second, it’s significantly more
 straightforward and agile—and also faster.

The Central Role of Controllers
The adoption of an action-centric view of the request (vs. the page-centric vision of Web
Forms) neatly separates the process of handling the request and the process of generating
the next HTML view. In a way, the generation of the view becomes a task for a sort of
 black-box component—the view engine. You can even say that the generation of the view is
a process outsourced to an external (and replaceable) provider.

When it comes to designing an ASP.NET MVC application, you don’t reason much in terms of
pages to author and code. Rather, you focus on the actions that a user might trigger from the
displayed user interface. In other words, you focus on the use-case the Web page is called to
implement.

A controller is a plain class with some public methods. Each method usually has a one-to-one
link with a possible user action, such as changing a list selection or clicking a button.

From all this, it turns out that the role of controllers is central to the architecture of
an ASP.NET MVC application.

Actions and Controllers
Although the controller’s role in ASP.NET MVC is simple to understand overall and extremely
attractive, former Web Forms developers can’t help but raise some objections.

It’s fine to have the ability to directly call a class to obtain a fixed behavior, but not at the
price of giving away some much-needed capabilities of Web Forms, such as server controls,
free data binding, authorization, error pages, and output cache. So in ASP.NET MVC, how do
you deal with some common scenarios such as handling exceptions or caching the response
generated by a request? Additionally, how do you handle authentication and authorization?

Each ASP.NET MVC request is ultimately directed at executing a method on a selected
 controller class. The controller’s method runs, processes input data, executes some
 application logic, and figures out the view to use.

An ad hoc mechanism is required to functionally equalize a controller’s method to a Web
Forms event handler. This is exactly the role of action filters in ASP.NET MVC. An action filter

134 Part II The Core of ASP.NET MVC

is ultimately an attribute that decorates a controller’s method to declaratively provide it with
a pre-action and post-action behavior. As we’ll see later in this chapter, some predefined
action filters exist to specifically handle the display of error views, output caching, and
authorization.

A Typical Controller Class
It’s key to note that the responsibilities of the controller end with the identification of the
view to show next. The view is responsible for generating the markup for the browser and for
writing it in the output stream.

Here’s the structure of a typical controller class with a couple of methods:

public class HomeController : Controller

{

 public ActionResult Index()

 {

 // Execute some application logic

.
 .
 .

 // Yield to the view engine. The name of the view

 // in this case defaults to the name of the method.

 return this.View();

 }

 public ActionResult About()

 {

 // Execute some application logic

.
 .
 .

 // Yield to the view engine. The name of the view

 // is explicitly specified.

 return this.View("About");

 }

}

A controller’s method is expected to return an ActionResult object or any object that inherits
from ActionResult. Most of the time, though, a controller’s method doesn’t directly instantiate
an ActionResult object. It uses, instead, an action helper—that is, an object that internally
instantiates and returns an ActionResult object. The method View in the preceding example
provides an excellent example of an action helper. (More on this later.)

Controller Methods and Input Parameters
What about any input data that must be passed on to a controller’s method? Any accessible
input data is any data posted with the HTTP request. The ASP.NET MVC runtime groups any
input data in a single container—the parameters dictionary. The dictionary is made available
to any controller instance through a public property.

 Chapter 4 Inside Controllers 135

When writing the body of an action method, you can certainly access any available input
through the familiar Request object and any of its child collections, such as Form, Cookies,
ServerVariables, and QueryString.

However, the ASP.NET MVC runtime environment also offers another interesting feature—
automatic parameter resolution. If you specify a parameter list in the signature of the action
method, ASP.NET MVC attempts to match those parameter names to members of the
 parameters dictionary.

I’ll return to input parameters for action methods later as we delve deeper into the anatomy
of controllers.

Note Automatic parameter resolution is free of charge as long as you adhere to the
Convention-over-Configuration (CoC) paradigm. In practical terms, parameter resolution works
automatically only if you can guarantee that the name of each formal parameter in an action
method matches any of the element names in the parameters dictionary. The match is case
insensitive. When you violate the convention, parameter resolution—more often referred to
as model binding—is still possible but requires you to do some work on your own. Precisely, it
requires you to write a custom model binder component. (I’ll cover model binding in detail in
Chapter 6, “Inside Models.”)

Anatomy of an ASP.NET MVC Controller
The role of the controller is central to the architecture of ASP.NET MVC. For this reason,
a controller class is expected to have a fixed structure and provide some well-defined
 characteristics. As a developer, though, when you write a new controller class you are actually
absolved from fulfilling many of these requirements yourself.

Developers writing a controller class are simply required to define a public class with a few
public methods. This controller class, however, must derive from a mandatory base class—the
Controller class. In turn, the Controller class derives from a base class that implements a given
interface.

Let’s take the plunge into the internal structure of ASP.NET MVC controllers.

Inside the Structure of a Controller
The primary responsibility of a controller is executing any task associated with the incoming
request. Around this key responsibility, a number of other features are built. In the end,
a controller has quite a layered structure, as illustrated in Figure 4-4.

136 Part II The Core of ASP.NET MVC

Your Controller class here

ControllerBase class

IController interface

Other interfaces
IActionFilter, IAuthorizationFilter,

IExceptionFilter, IResultFilter
Controller class

FIGuRE 4-4 An interior view of a controller class

Let’s start with the IController interface.

The IController Interface
The IController interface has a precise, single responsibility: executing the specified request
context. A request context is the ASP.NET MVC abstraction that encapsulates information
about the HTTP request that matches a defined route.

Admittedly, the purpose of the interface couldn’t be clearer. A controller is expected to
 receive an HTTP request that matches any of the routes your application supports and
 execute it. Here’s the definition of the interface as it appears in the System.Web.Mvc
 assembly. (The namespace of the interface is also System.Web.Mvc.)

public interface IController

{

 void Execute(RequestContext requestContext);

}

The RequestContext object is defined in the System.Web.Routing assembly as follows:

public class RequestContext

{

 public RequestContext(HttpContextBase httpContext, RouteData routeData);

 public HttpContextBase HttpContext { get; internal set; }

 public RouteData RouteData { get; internal set; }

}

As you can see, the context of an HTTP request is identified by the ASP.NET HttpContext
 object, and any data (controller name, method name, and optionally parameters) is extracted
from the route.

Important You should note the use of the ASP.NET MVC HttpContextBase class instead of the
ASP.NET native HttpContext class. This is done to decouple the controller from the
ASP.NET infrastructure for testing purposes. Essentially, HttpContextBase serves as the base class
for classes that contain HTTP-specific information about an individual HTTP request.

 Chapter 4 Inside Controllers 137

The ControllerBase Class
The implementation of the IController interface is buried in the ControllerBase class, which is
also defined in the System.Web.Mvc assembly. The class ControllerBase represents the base
class for all ASP.NET MVC controllers. The structure of the class is shown here:

public abstract class ControllerBase : IController

{

 // Fields

.
 .
 .

 // Methods

 protected ControllerBase();

 protected virtual void Execute(RequestContext requestContext);

 protected abstract void ExecuteCore();

 protected virtual void Initialize(RequestContext requestContext);

 void IController.Execute(RequestContext requestContext);

 // Properties

 public ControllerContext ControllerContext { get; set; }

 public TempDataDictionary TempData { get; set; }

 public bool ValidateRequest { get; set; }

 public IDictionary<string, ValueProviderResult> ValueProvider { get; set; }

 public ViewDataDictionary ViewData { get; set; }

}

The role of each public property is explained in Table 4-1. These are properties that you may
be using quite often in the development of your own controllers and, probably even more
often, in the writing of unit tests for your controllers. So grabbing a solid understanding of
their intended meaning and the information they carry out is an important achievement.

TABLE 4-1 Properties of the ControllerBase class

Property Description

ControllerContext Gets and sets an object that encapsulates the operational context of the
controller. The controller context consists of the request context plus a
reference to the controller itself. (More on this in a moment.)

TempData Gets and sets a dictionary of data that persists across only two successive
requests. Any data stored in the dictionary is accessible in the context of
the next request, but it is then automatically discarded.

ValidateRequest Indicates whether the request is valid. The constructor of the class sets it
to True. The property is read/write.

ValueProvider Gets and sets the parameters dictionary, which is a collection of values
available to the controller that include the following, in this order: form
values, route values, and query string values.

ViewData Gets and sets a dictionary of values that the view object will receive to
produce a new user interface following the controller’s action.

138 Part II The Core of ASP.NET MVC

What does the ControllerBase do in its implementation of the IController interface? Here’s
an illustrative code snippet:

void IController.Execute(RequestContext requestContext)

{

 this.Execute(requestContext);

}

protected virtual void Execute(RequestContext requestContext)

{

 if (requestContext == null)

 {

 throw new ArgumentNullException("requestContext");

 }

 this.VerifyExecuteCalledOnce();

 this.Initialize(requestContext);

 this.ExecuteCore();

}

In ControllerBase, the Execute method does some initialization work and then yields to
 another method for actual execution. The ExecuteCore method is marked as abstract and will
be defined by inheritors, such as the class Controller.

The initialization of the controller is a simple task, as this code snippet shows:

protected virtual void Initialize(RequestContext requestContext)

{

 this.ControllerContext = new ControllerContext(requestContext, this);

}

All it consists of is the instantiation of the ControllerContext property. The ControllerContext
type encapsulates information about the ongoing HTTP request and the controller.
Even though ControllerContext doesn’t have any parent class, it can be considered
an extension of RequestContext that just adds a reference to the controller object in addition
to route data and HTTP context.

public class ControllerContext

{

 // Fields

.
 .
 .

 // Methods

 public ControllerContext();

 protected ControllerContext(ControllerContext controllerContext);

 public ControllerContext(RequestContext requestContext, ControllerBase controller);

 public ControllerContext(HttpContextBase httpContext, RouteData routeData,

 ControllerBase controller);

 // Properties

 public virtual ControllerBase Controller { get; set; }

 public virtual HttpContextBase HttpContext { get; set; }

 public RequestContext RequestContext { get; set; }

 public virtual RouteData RouteData { get; set; }

 Chapter 4 Inside Controllers 139

 // Properties available only in ASP.NET MVC 2

 public bool IsChildAction { get; }

 public ViewContext ParentActionViewContext { get; }

}

Aside from constructors, the ControllerContext class features a few additional properties.
However, two of them—HttpContext and RouteData—exist mostly for convenience
 because the information they deliver is accessible through the RequestContext property.
The additional piece of data you find in ControllerContext is just a reference to the underlying
controller instance. In ASP.NET MVC 2, the new support for render actions led to introducing
the concept of child actions, and subsequently two extra properties were added to the
ControllerContext class. I’ll return to child actions later in the chapter.

Note Considering that the ControllerContext property is exposed by the controller class
itself, what’s the purpose of having a member of type Controller in the ControllerContext class?
The operational context of the controller is being exchanged with the view engine and with the
provider of temporary data that survives the current request and the next. In addition, it’s used
by the action invoker component to execute the action following a request. The action invoker
needs a reference back to the controller to retrieve input parameters. For testability reasons, the
action invoker class (usually, the ControllerActionInvoker class) needs to get an explicit reference
to the controller. This is where ControllerContext fits in.

The Controller Class
The Controller class inherits from ControllerBase and adds a bunch of new methods and
properties. All public and protected members of this class should interest you because
your application’s controllers ultimately inherit from Controller. In addition, the Controller
class provides an override for the sole method on ControllerBase that remained abstract—
ExecuteCore. Here’s the signature of the Controller class:

public abstract class Controller : ControllerBase,

 IActionFilter,

 IAuthorizationFilter,

 IDisposable,

 IExceptionFilter,

 IResultFilter

{

.
 .
 .

}

We’ll take a look at implemented interfaces in the next section. Table 4-2, instead, describes
the behavior of prominent Controller methods. All methods in the table are protected, and
most of them are internal. Only a few are virtual and can be overridden in your controller
classes.

140 Part II The Core of ASP.NET MVC

TABLE 4-2 Methods of the Controller class

Method Description

Content Internal and overloaded method. It gets some raw data (primitive
data, custom objects) and returns a ContentResult object to render
it to the browser.

CreateActionInvoker Virtual method. It creates an action invoker to be used to govern
the execution of action requests.

CreateTempDataProvider Virtual method. It creates the actual container for data accessible
through the TempData dictionary. By default, the temp data
 provider is an instance of the SessionStateTempDataProvider class.

Dispose Virtual method. It performs application-specific tasks associated
with freeing, releasing, or resetting unmanaged resources used by
the controller.

ExecuteCore Takes care of executing the action method as specified in the route
data associated with the current request.

File Internal and overloaded method. It returns a FileResult object used
to render the content of a file. Content to render can be expressed
in a variety of formats: file name, byte array, or stream.

HandleUnknownAction Virtual method. It is called whenever a request matches the
 controller, but not an action method of the controller. The default
implementation just throws an exception.

Initialize Performs another step of initialization on the controller class.
It first calls the base Initialize method (described earlier) and then
 instantiates a helper object for URL manipulation.

JavaScript Internal and overloaded method. It returns a JavaScriptResult
 object that encapsulates a piece of script code to be written to the
 response stream.

Json Internal and overloaded method. It returns a JsonResult object
that encapsulates a JSON string resulting from the serialization of
a given object.

PartialView Internal and overloaded method. It gets a view name and returns
a PartialViewResult object that renders a partial (that is, incomplete)
view to the response stream. A partial view is much like a user
 control in Web Forms.

Redirect Virtual method. It returns a RedirectResult object that contains
 information about the URL to redirect to.

RedirectToAction Internal and overloaded method. It gets the controller
name, action name, and route values. The method returns
a RedirectToRouteResult object to redirect to the URL identified by
the specified controller, action, and route parameters.

RedirectToRoute Internal and overloaded method. It gets route name and route
 values. The method returns a RedirectToRouteResult object to
 redirect to the URL identified by the specified route and related
parameters.

 Chapter 4 Inside Controllers 141

Method Description

TryUpdateModel Internal and overloaded method. It updates the specified model
instance using values currently stored in the parameters dictionary
exposed via the ValueProvider property. The method returns
a Boolean value to indicate success or failure of the update.

UpdateModel Internal and overloaded method. It works like TryUpdateModel
 except that it throws an exception if the update fails.

View Internal and overloaded method. It returns a ViewResult object that
renders a view (that is, a new page) to the response stream.

I’ll cover the return values of controller methods later in the chapter. I’ll take care of model
updates in great detail in Chapter 6. Views, on the other hand, will be the main topic of
Chapter 5, “Inside Views.”

Before we go any further, it’s worth spending a few more words to explain the differences
between three apparently similar methods: Redirect, RedirectToAction, and RedirectToRoute.
All three methods actually move the control to another view. In raw MVC terms, we would
say that all redirect methods move to another MVC triad. The way in which you specify the
next triad is different for each considered method.

The Redirect method is the simplest—it just redirects to the view represented by the specified
URL. The RedirectToAction method, on the other hand, requires that you indicate the next
view through the action (and, optionally, the controller and parameters) that renders it.
You can also use RedirectToAction to switch from one controller to another. The method
RedirectToAction assumes that you intend to redirect to the same route, perhaps changing
the controller, action, and parameters.

The RedirectToRoute method works in much the same way as RedirectToAction, but it offers
a bit more flexibility. RedirectToRoute explicitly requires that you specify the route name
and, optionally, all of its parameters. In doing so, you can switch from one route to another.
In light of their similarity, it’s not coincidental that RedirectToAction and RedirectToRoute
 return an object of the same type—RedirectToRouteResult.

In spite of the surface difference, essentially all redirect methods work the same way—they
collect parameters, build a URL, and then invoke the method Redirect on the HttpResponse
object.

Tip If no method match is found, an override of HandleUnknownAction gives you the last chance
to decide what to do. At a minimum, you can also use an override of HandleUnknownAction as
a custom exception handler for unknown actions.

142 Part II The Core of ASP.NET MVC

Table 4-3 details the properties of the Controller class.

TABLE 4-3 Properties of the Controller class

Property Description

ActionInvoker Gets and sets an IActionInvoker object for the controller. An action invoker
 defines the contract for invoking an action in response to an HTTP request.
This object is responsible for the actual execution of the action.

Binders Gets and sets the collection of model binders available for the application.
A model binder is a sort of serializer for complex types that need to be passed
around across requests. (More on this later.)

HttpContext Gets all HTTP-specific information about the ongoing request.

ModelState Gets a ModelStateDictionary dictionary object that represents the current
state of the model object. The model object, if defined for a view, is populated
with posted data. The ModelState dictionary contains information about
anything that is wrong with the posted values. The property mirrors the
ModelState property of the ViewData collection. Its primary use is to carry
message errors to the view after the action method executed and validated
posted data. (I’ll return to ModelState in Chapter 6 and Chapter 7, “Data Entry
in ASP.NET MVC.”)

Request Gets the ASP.NET MVC abstraction of the ASP.NET native Request object.
It returns an instance of the HttpRequestBase class.

Response Gets the ASP.NET MVC abstraction of the ASP.NET native Response object.
It returns an instance of the HttpResponseBase class.

RouteCollection Internal property. Gets and sets the collection of routes for the application.

RouteData Gets the RouteData object for the current request. The RouteData object
encapsulates information about a route, such as tokens and the route handler.
The RouteData class also offers methods to read tokens with ease.

Server Gets the ASP.NET MVC abstraction of the ASP.NET native Server object.
It returns an instance of the HttpServerUtilityBase class.

Session Gets the ASP.NET MVC abstraction of the ASP.NET native Session object.
It returns an instance of the HttpSessionStateBase class.

TempDataProvider Gets and sets the ITempDataProvider object responsible for storing data for
the next request. The default provider stores data in the session state.
The class is named SessionStateTempDataProvider.

Url Gets and sets the helper object used to generate URLs using specified
ASP.NET routes. The helper object is of type System.Web.Mvc.UrlHelper.

User Gets the ASP.NET MVC abstraction of the ASP.NET native User object.
It returns an object that implements the IPrincipal interface.

As you can see, the base class of the user-defined controller makes available several
 properties that provide handy access to request-specific information. Such information
 includes intrinsic ASP.NET objects such as Session, Request, and Response, and it also includes
User for security information, route information, and the whole HttpContext object.

 Chapter 4 Inside Controllers 143

Note that intrinsic objects in ASP.NET MVC are wrappers for native ASP.NET intrinsic objects
such as Request and Response. In addition, the Controller class exposes an ad hoc object for
executing the action associated with the request. This object is the action invoker. Let’s find
out more.

Execution of a Request
Any requests that hit an ASP.NET MVC application are destined to be resolved with the
 invocation of an action method within a controller class. Defined on the Controller class, the
ExecuteCore method is where the action method is actually invoked. Here’s the source code
of the method:

protected override void ExecuteCore()

{

 // Load temp data (if any) to be used in this request

 // (Nothing happens if this is a child action.)

 PossiblyLoadTempData();

 try

 {

 // Execute the action

 string actionName = this.RouteData.GetRequiredString("action");

 if (!this.ActionInvoker.InvokeAction(base.ControllerContext, actionName))

 {

 this.HandleUnknownAction(actionName);

 }

 }

 finally

 {

 // Save temp data (if any) for the next request

 // (Nothing happens if this is a child action.)

 PossiblySaveTempData();

 }

}

Essentially, the ExecuteCore method first attempts to populate the current instance of the
TempData collection with any data that was previously stored for this request to consume.
Next, it figures out from route data the name of the action method to execute and passes it
to the action invoker.

The action invoker simply uses .NET reflection to execute the method and returns a Boolean
value to denote success or failure. The action invoker obtains any input parameters required
by the action method from the controller context.

The ActionInvoker property on Controller references an instance of the
ControllerActionInvoker class. This class is architected to take into account action filters such
as those for authorization and exception handling.

144 Part II The Core of ASP.NET MVC

Filter Interfaces for a Controller
The Controller class implements a bunch of extra interfaces, as detailed in Table 4-4.

TABLE 4-4 Additional interfaces for class Controller

Interface Description

IActionFilter Defines methods for an action filter. An action filter defines actions to be
taken before and after the execution of an action method.

IAuthorizationFilter Defines methods for an authorization filter. An authorization filter checks
whether the user that is attempting to execute the action method has
enough rights to do it.

IExceptionFilter Defines methods for an exception filter. An exception filter hooks up any
exceptions that might occur during an action method.

IResultFilter Defines methods for a result filter. A result filter defines actions to be
taken before and after the execution of the result of an action method.
For example, if you want to run your own code before and after the
 generation of the next view, you can take advantage of the methods of
the IResultFilter interface.

The implementation of all the interfaces in Table 4-4 results in a few additional methods on
the Controller class. Table 4-5 lists them and comments on them all.

TABLE 4-5 Filter methods in the class Controller

Method Description

OnActionExecuting Invoked just before an action method is executed.

OnActionExecuted Invoked right after the execution of an action method is completed.

OnAuthorization Invoked when authorizing the execution of an action method.

OnException Invoked when an exception occurs in an action method.

OnResultExecuting Invoked just before an action result is executed.

OnResultExecuted Invoked right after the execution of an action result is completed.

All these methods are protected and virtual and can therefore be overridden in your
 controller classes to achieve more specialized behavior.

Behavior of a Controller
The typical behavior of a controller can be summarized in four main steps: getting input
data, executing the request-related action method, preparing data for the view, and
 triggering the refresh of the view.

 Chapter 4 Inside Controllers 145

Input Parameters of an Action Method
Because an action method is invoked in response to an HTTP request, any input parameters
it might need can be only data posted with the request. This includes query string values,
form data, and cookies. Here’s a quick example:

public class HomeController : Controller

{

 public ActionResult Index()

 {

 // Retrieve input parameters from the request. (Assuming there is a

 // value named Param1 in the posted data.)

 object param1 = Request["Param1"];

 // Execute some application logic

.
 .
 .

 // Prepare data for the view. This step may include some validation

 // on the data generated by the processing logic.

.
 .
 .

 // Yield to the view

 return this.View();

 }

.
 .
 .

}

The MVC HTTP handler in charge of the incoming HTTP request extracts any content from
the HTTP packet and stores that in the Request property of the controller’s instance being
used. This Request property of controllers offers a programming interface nearly identical
to that of the ASP.NET’s Request intrinsic object. (Once more, bear in mind that the Request
 object used in the preceding snippet is not the ASP.NET intrinsic object but an ASP.NET MVC
ad hoc wrapper object.)

To be precise, in the preceding code snippet we actually use the Item property on the
Request object through its popular default syntax Request[…]. Note that when you use the
default property on the Request object, it automatically searches for a matching variable
name in up to four collections: Form, Cookies, ServerVariables, and QueryString.

If you need to retrieve an input value specified in the URL as a route value, you must resort
to the parameters dictionary—precisely, the ValueProvider collection on the Controller class.
This collection groups together route values with the content of the Form and QueryString
collections.

146 Part II The Core of ASP.NET MVC

Although perfectly functional, this approach is one you hardly use in any real-world
code. Interestingly, in fact, the ASP.NET MVC framework can automatically map segments
of the URL to parameters for an action method. This is another nice side effect of the
 Convention-over-Configuration paradigm so widely employed in ASP.NET MVC. This feature
is known as model binding. To enable this behavior, all you need to do is change the signature
of the action method to accommodate input parameters, as shown in the following example:

public class HomeController : Controller

{

 public ActionResult Index(int tabID)

 {

 // The value of tabID comes from a possible element named tabID

 // in the Form and QueryString collections or route data. The

 // parameter is undefined if no such match can be found.

 // Execute some application logic

.
 .
 .

 // Yield to the view

 return this.View();

 }

.
 .
 .

}

If the HTTP request contains posted values whose names match the names of any formal
parameters of the method, those values are automatically passed to the action method.
The match is case insensitive and results in an exception if any of the method parameters
cannot be resolved.

If you mark input parameters in the method as nullable, you can avoid exceptions—provided,
of course, that your code is ready to handle null parameters:

public class HomeController : Controller

{

 // Arguments in the signature are both nullable, so no exceptions are

 // thrown during the preliminaries of the method execution.

 public ActionResult Index(int? tabID, string topic)

 {

 // If you try to use parameter tabID without first

 // checking it against nullness, you are exposed to a

 // NullReference exception.

 int id = 0;

 if (tabID.HasValue)

 id = tabID.Value;

.
 .
 .

 }

.
 .
 .

}

 Chapter 4 Inside Controllers 147

Using automatic parameter resolution is a convenient and effective feature. However, it’s a
rather advanced framework feature and should be used only if you, as a developer, are fully
aware of what it means and how it works. Otherwise, it might look like a fantastic piece of
magic. And there should be no magic in software.

Using Complex Data Types in an Action Method
Automatic parameter resolution is not limited to situations in which you use primitive data
types such as numbers and strings. Look at the following sample:

public class CustomerController : Controller

{

 // You expect the action method to receive a complex data type

 public ActionResult Detail(Customer customerID)

 {

 // ASP.NET MVC ensures that, under proper conditions,

 // the Customer object is built for you from posted data.

.
 .
 .

 }

.
 .
 .

}

As a matter of fact, an instance of the Customer class is rebuilt on the server and then passed
on to the action method. However, any pieces of data that form the Customer instance have
to be sent off to you over the HTTP request. A built-in component of the ASP.NET MVC
framework—the model binder—makes an attempt to bind posted data to public members
of the specified type—Customer in this case.

A default algorithm is applied that is hard-coded in the DefaultModelBinder class. The default
algorithm entails that a public property on the target type is matched by name to
an element of the form data collection. For example, property CustomerID on Customer gets
a non-null value if a CustomerID item is found in the posted data—typically, because of a
nondisabled CustomerID input field in the posting HTML form.

You can change the binding algorithm on a per-type basis by defining a model binder class.
I’ll show how to create custom model binders in Chapter 6.

Note Design-by-contract is an old approach to software development that has been pushed
aside in the Windows platform for too many years. Today, design-by-contract is gaining
 popularity also thanks to the Microsoft .NET Framework 4 and its Code Contract API. Simply
put, design-by-contract recommends that you define for each method a sort of software
contract where you clearly indicate what preconditions exist for the method to execute, what
 postconditions are expected at the end of execution, and what conditions never change before
and after execution. In particular, preconditions provide a formal way of ensuring that all
 required parameters are available, their values are in the right range, and so forth.

148 Part II The Core of ASP.NET MVC

Does it make sense to use preconditions in the development of action methods? You bet.
Action methods are plain methods, and input validation is always a must. Preconditions are just
an effective way to validate input for a method.

Action Methods
An action method is simply a public method defined on a class that inherits (either directly or
indirectly) from Controller. By default, any public method on the controller class is considered
an action method and is therefore callable from the browser via the default route or any
other routes you might have.

Important You must be fully aware of the potential security issues that could result from the
definition of a public method on a controller class. Because any public method is automatically
an action method potentially callable over the Internet, you should make sure that any public
methods of yours are OK to call for any users. Otherwise, you should either drop the public
modifier for the method or secure the method so that only authenticated and authorized users
can call it. Later on, in the “Attributes of a Controller” section, we’ll explore security attributes for
an action method.

Nonpublic methods are not recognized as action methods. If users place a request to
a protected, private, or internal method on a controller class, the request fails with an HTTP
404 status code. (This, at least, is the default behavior that can be changed by overriding the
HandleUnknownAction method on a controller class.)

A controller class, however, can also have public methods that are not exposed as action
methods. To achieve this, you just decorate the method with the NonAction attribute,
as shown here:

public class HomeController : Controller

{

 [NonAction]

 public void ConfigureControllerForTesting()

 {

.
 .
 .

 }

 public ActionResult Index()

 {

.
 .
 .

 }

.
 .
 .

}

Needless to say, a nonaction method is not bound to returning an ActionResult object.
The signature of a nonaction method is entirely up to you.

 Chapter 4 Inside Controllers 149

When would it be desirable to have a public method that is not intended to be an action
method?

A controller class can certainly have internal methods that action methods invoke to do their
job. These nonaction methods, though, don’t need to be public. A method that exists only for
design and abstraction purposes is better modified to be a protected or perhaps private method.

So, again, when would it be useful to have public nonaction methods? Definitely,
 testing-specific methods configure a possible scenario. As in the code snippet just shown,
you can have a public nonaction method that performs some configuration work to prepare
the controller for testing. You might decide this is the way to avoid the burden of having to
repeat that configuration code over and over again in your unit tests.

Note As far as testing is concerned, you can also mark a test-only method as internal. In this
way, the method would not be publicly visible but can still be used in unit tests if you declare
the unit test assembly as a “friend” of the controller’s assembly. This is achieved by adding a
special attribute to the AssemblyInfo.cs file of the controller’s assembly. The attribute to add is
an assembly-level attribute named InternalsVisibleTo. The attribute takes a string parameter that
bears the name of the friend assembly. In this way, all internals around the controller class are
visible from within the unit test assembly.

Behavior of an Action Method
The purpose of an action method is to execute any business logic that is associated with the
ongoing request and represented by the current URL. Most of the time, an action method will
interact with the middle tier of the Web application. In other, less frequent, situations it’s possible
that the method performs some calculation internally and uses any results to prepare the view.

Essentially, an action method might need to hold (or acquire) a reference to some
 application-specific object that represents the gateway to the middle tier. Depending on how
you have devised your business layer, this gateway might be a reference to an object in the
service layer, a user-defined repository object for data access operations or, more directly, the
entry point to an object model such as those encapsulated by Object/Relational Mapper
(O/RM) tools such as NHibernate, Entity Framework, or even LINQ-to-SQL.

The action method is definitely responsible for creating, or obtaining, an instance of whatever
gateway object it needs. Although some coupling between action methods and gateways is
unavoidable and necessary, you should consider how to keep it to the lowest possible level.

Coupling can impact the testability of the controller. It’s always desirable that you test
 controllers (and components in general) in full isolation from dependencies. This means that
in real-world applications you might need to architect the controller class in a way that makes
it easy and effective to inject any external dependencies, such as that to the middle-tier
gateway, to the file system, or perhaps to the ASP.NET runtime environment. I’ll return to this
topic later when discussing design and testability issues for a controller.

150 Part II The Core of ASP.NET MVC

Patterns for the Gateway to the Middle Tier
In the special flavor of MVC you get from the ASP.NET MVC framework, the controller is
a sort of mediator between the user interface and the application’s middle tier.

The controller is ultimately responsible for interacting with the topmost layer you
have in the business logic. The shape and color of your business logic depend on the
 pattern you used to design it, and also on the required level of abstraction. The Service
Layer pattern suggests that you define on top of your business logic a bunch of
 coarse-grained methods that map one-to-one to use-cases. Methods in the service
layer essentially implement the application logic.

Instead of adding yet another layer, can you simply store all the orchestration logic
required for processing a use-case in the action method itself? Sure, you can. And this
is exactly the scenario that requires your action methods to hold a reference to
 components in the Data Access Layer (DAL) or directly to an O/RM root object such as
the DataContext object in LINQ-to-SQL, the ObjectContext object in Entity Framework,
and the Session object in NHibernate.

The Service Layer pattern serves the purpose of allowing you to use a cleaner design,
and all it does is add another layer, which ultimately contributes to decoupling
 controllers from the middle tier.

There is, however, a sort of middle ground between using a Service Layer and creating
direct DAL access—an implementation of the Repository pattern. A repository layer
 essentially groups data access operations in a way that abstracts DAL details away from
the controller. A repository layer is a wrapper around O/RM or ADO.NET direct calls.
As such, it might look dangerously similar to the Service Layer. So what’s the difference?

The Service Layer is a collection of classes that belong to the business layer. The
Repository is a collection of classes that belong to the data access layer. The Repository,
therefore, is not supposed to include any orchestration logic, beyond that necessary to
perform query and Create, Read, Update, Delete (CRUD) operations against the data
model. If you opt solely for Repository, you should place any orchestration-specific
and application-specific logic in the action method. A combination of the Service Layer
and Repository patterns is not just possible but, moreover, welcome. However, consider
that any new layer adds some overhead and turns out to be overkill in simple scenarios.
On the other hand, never forget that layering is the most powerful tool you have to
fight complexity.

I’ll touch on business layer design issues again in Chapter 6. Anyway, a good reference
for this kind of patterns is “Microsoft .NET: Architecting Applications for the Enterprise,”
by Dino Esposito and Andrea Saltarello (Microsoft Press, 2008).

 Chapter 4 Inside Controllers 151

Passing Data to a View
After the action method has executed any tasks associated with the request, it likely holds
some fresh data to be integrated in the next view to be displayed. In ASP.NET MVC, the
generation of the view is delegated to a distinct layer of code—the view engine. Figure 4-5
shows the whole life cycle of an action method—from processing the input data to delivery
of view data to the rendering engine.

1

2

3

Middle tier façade

View engine

Processing input data

Filling the view model

Connecting to the middle-
tier gateway

Output
data

View model
(ViewData
collection

and/or Model)

FIGuRE 4-5 The life cycle of an action method

Because the view engine is distinct from the controller, it needs to receive any data required
to generate the next browser view. Earlier in the chapter, while discussing the ControllerBase
class (see Table 4-1), you briefly met a property named ViewData that is defined as follows:

public abstract class ControllerBase : IController

{

.
 .
 .

 public ViewDataDictionary ViewData { get; set; }

}

The ViewData property represents a built-in container used for passing data between a
controller and a view. The property is of type ViewDataDictionary. The idea is that once the
controller has executed a given action, it packs it into the ViewData container and gets any
significant results to be shown to the user. The following code snippet, which is an extremely
simple depiction, shows you what you get with any ASP.NET MVC project template:

public class HomeController : Controller

{

 public ActionResult Index()

 {

 // Pack data for the view

 this.ViewData["Message"] = "Welcome to ASP.NET MVC!";

152 Part II The Core of ASP.NET MVC

 // Tell the view to render

 return this.View();

 }

.
 .
 .

}

The ViewData dictionary is definitely the object that contains a valid representation of the
view-model—that is, any data being worked on in the view. You can add as many entries to
the ViewData dictionary as you plan to consume from within the view class.

From within a view class, you then retrieve the content of the ViewData dictionary using the
same syntax as just shown. Here’s an example:

<!-- Snippet taken from an ASPX template in the Views folder -->

<%@ Page Language="C#" Inherits="System.Web.Mvc.ViewPage" %>

<h2><%= Html.Encode(this.ViewData["Message"]) %></h2>

What’s different in the two snippets, of course, is the type of the this object, which
 exposes the ViewData property. It is a Controller-derived class in the first snippet; it is
a ViewPage-derived class in the snippet just shown.

It’s useful now to have a closer look at the type of the ViewData property—the
ViewDataDictionary type.

The View-Model Container
As noted in Chapter 3, the ViewDataDictionary type is a class that implements the IDictionary
interface, and it looks and behaves like a classic name/value pair, enumerable dictionary.
Any data you store in a dictionary is treated as a plain object and requires casting, boxing,
or both to be worked on. (This is nothing new for ASP.NET developers because it is the same
model that you still use for managing the global ASP.NET cache or the session state.)

A dictionary is definitely not something you would call a strongly typed container. At the
same time, though, a dictionary is straightforward to use and works just fine.

The ViewDataDictionary class is special because it also features a Model property, as shown here:

public class ViewDataDictionary : IDictionary<string, object>,

 ICollection<KeyValuePair<string, object>>,

 IEnumerable<KeyValuePair<string, object>>,

 IEnumerable

{

 public object Model { get; set; }

 . .
 .

}

The Model property is an alternative and object-oriented way of passing data to the view
 object. Instead of fitting flat data into a dictionary, you can shape up a custom object that
faithfully represents the data the view expects. In other words, the Model property just
 represents your chance of creating a view-model object that is unique for each view.

 Chapter 4 Inside Controllers 153

A view class that supports a strongly typed view-model must inherit from the generic version
of ViewPage, as shown here:

<!-- Snippet taken from an ASPX template in the Views folder -->

<%@ Page Language="C#" Inherits="System.Web.Mvc.ViewPage< YourViewModel>" %>

<h2><%= Html.Encode(this.ViewData.Model.Message) %></h2>

Inheritance from ViewPage<T> ensures that the Model object is not null if data for it is received
from the controller. In the view template, you refer to any properties in the view-model using
the ViewData.Model path. As a developer, you are responsible for defining the structure of the
view-model class—for example, the YourViewModel class in the preceding example.

I’ll have much more to say about views and view-models in Chapters 5 and 6.

Note The term view-model is relatively new and is not mentioned in the original MVC
 formulation. However, today it should be considered a more precise term to refer to the object
model that describes the data being worked on in the view. In a way, the expression View Model
replaces what MVC originally called the Model. The reason for this change is that today with the
advent of domain-related object models in the business layer, the term Model has become a bit
overloaded and therefore unclear.

What do you mean exactly when you say “model”? Are you referring to the model used to
 represent data in the business layer? Or are you referring to the data as represented in the view?
Additionally, are the two models the same?

When MVC was originally devised, the two models coincided. Today, this is no longer true.
In addition, it’s becoming false for more and more applications every day. That’s why it’s important
to use the expression view-model to refer to the description of data worked on in the view. Other
terms, such as business data model or entity model, work better to describe business data.

Finally, what about object model and domain model? The former term is fine to use but is a bit
too generic. The latter, conversely, is too specific because it refers to an entity model with some
very specific characteristics.

Return Value of an Action Method
An action method typically returns an object of type ActionResult. The type ActionResult is
not a data container, though. More precisely, it is an abstract class that offers a common
programming interface to execute some further operations on behalf of the action method.
Here’s the definition of ActionResult:

public abstract class ActionResult

{

 protected ActionResult()

 {

 }

 public abstract void ExecuteResult(ControllerContext context);

}

154 Part II The Core of ASP.NET MVC

By overriding the ExecuteResult method, a derived class gains access to any data produced
by the execution of the action method and triggers some subsequent action. Generally, this
 subsequent action is related to the generation of some response for the browser.

Because ActionResult is an abstract type, every action method is actually required to return
an instance of a more specific type. Table 4-6 lists all predefined action result types.

TABLE 4-6 Predefined ActionResult types in ASP.NET MVC

Type Description

ContentResult Sends raw content (not necessarily HTML) to the browser.
The ExecuteResult method of this class serializes any content it
 receives.

EmptyResult Sends no content to the browser. The ExecuteResult method of this
class just does nothing.

FileContentResult Sends the content of a file to the browser. The content of the file is
expressed as a byte array. The ExecuteResult method simply writes
the array of bytes to the output stream.

FilePathResult Sends the content of a file to the browser. The file is identified
via its path and content type. The ExecuteResult method calls the
TransmitFile method on HttpResponse.

FileStreamResult Sends the content of a file to the browser. The content of the file is
represented through a Stream object. The ExecuteResult method
copies from the provided file stream to the output stream.

HttpUnauthorizedResult Sends an HTTP 401 response code to the browser. The HTTP status
code identifies an unauthorized request.

JavaScriptResult Sends JavaScript text to the browser. The ExecuteResult method of
this class writes out the script and sets the content type accordingly.

JsonResult Sends a JSON string to the browser. The ExecuteResult method
of this class sets the content type to the application or JSON and
invokes the JavaScriptSerializer class to serialize any provided
 managed object to JSON.

PartialViewResult Sends HTML content to the browser that represents a fragment of
the whole page view. As mentioned, a partial view in ASP.NET MVC
is a concept very close to a user control in Web Forms.

RedirectResult Sends an HTTP 302 response code to the browser to redirect the
browser to the specified URL. The ExecuteResult method of this class
just invokes Response.Redirect.

RedirectToRouteResult Like RedirectResult, it sends an HTTP 302 code to the browser and
the new URL to navigate to. The difference is in the logic and input
data employed to determine the target URL. In this case, the URL is
built based on action/controller pairs or route names.

ViewResult Sends HTML content to the browser that represents a full page view.

 Chapter 4 Inside Controllers 155

Note that FileContentResult, FilePathResult, and FileStreamResult derive from the same base
class, FileResult. You use any of these action result objects if you want to reply to a request
with the download of some file content or even some plain binary content expressed as
a byte array.

PartialViewResult and ViewResult inherit from ViewResultBase and return HTML content.
ViewResult is by far the most frequently used action result object in an ASP.NET MVC
application. A view result object is also significantly more complex than any other action result.
A view result object, in fact, deals with the currently registered view engine—a replaceable
component—and accesses the view-model. As we’ll see in more detail in Chapter 5, a view
engine gets an input template and the view-model and produces HTML. The input template,
however, doesn’t have to be an ASPX file. Whether it is ASPX markup, XAML, or plain XML
depends exclusively on the capabilities of the selected view engine.

Note What if your controller action method doesn’t return ActionResult? First and foremost,
no exceptions are raised. Quite simply, ASP.NET MVC encapsulates any return value from the
 action method (numbers, strings, or custom objects) into a ContentResult object. The execution
of a ContentResult object causes the plain serialization of the value to the browser. For example,
an action that returns an integer or a string will get you a browser page that displays data
as is. On the other hand, returning a custom object displays any string resulting from the
 implementation of the object’s ToString method. If the method returns an HTML string, any
markup will not be automatically encoded and the browser will likely not properly parse it.
Finally, a void return value is actually mapped to an EmptyResult object whose execution just
causes a no-op.

More often than not, an action method doesn’t directly create and return an ActionResult
 object. As shown in Table 4-2, the base Controller class features a bunch of helper methods
that you internally create and that return an appropriate ActionResult object. The most
 popular of these helper methods is View. Here’s the list of overloads for the method:

ViewResult View();

ViewResult View(object model);

ViewResult View(string viewName);

ViewResult View(IView view);

ViewResult View(string viewName, object model);

ViewResult View(string viewName, string masterName);

virtual ViewResult View(IView view, object model);

virtual ViewResult View(string viewName, string masterName, object model);

The method can accept the view name, the master page name, and the view-model.
All parameters are optional and, if not specified, are resolved in some way internally. In some
cases, the View method might also accept an IView object that points it directly to an internal
object ready for rendering. (I’ll say more about the rendering mechanism in Chapter 5.)

156 Part II The Core of ASP.NET MVC

Attributes of Controllers and Action Methods
In .NET, attributes are a declarative way of attaching some specific behavior to a class
or a method. The behavior of both the controller class and its methods can be further
 specialized using a number of attributes.

There are three categories of attributes that affect a controller class and its methods: filters,
invocation attributes, and action selectors.

Filter Attributes
A filter is a piece of code that can be attached to a few predefined stages during the
 execution of an action method. Table 4-7 lists the built-in filters available in ASP.NET MVC.

TABLE 4-7 Predefined filters in ASP.NET MVC

Filter Description

AsyncTimeout Marks an action method as one that will execute asynchronously and
terminate in the specified number of seconds. A companion attribute
also exists for asynchronous methods that do not set a timeout.
This companion attribute is NoAsyncTimeout.

This is available only in ASP.NET MVC 2.

Authorize Marks an action method as one that can be accessed only by specified
users, roles, or both.

ChildActionOnly Marks an action method as one that can be executed only as a child
action during a render-action operation.

This is available only in ASP.NET MVC 2.

HandleError Marks an action method as one that requires automatic handling
of any exceptions thrown during its execution.

OutputCache Marks an action method as one whose output needs to be cached.

RequireHttps Marks an action method as one that requires a secure request.
If the method is invoked over HTTP, the attribute forces a redirect
to the same URL but over a HTTPS connection, if that’s ever possible.

This is available only in ASP.NET MVC 2.

ValidateAntiForgeryToken Marks an action method as one that requires validation against the
antiforgery token in the page for each POST request.

ValidateInput Marks an action method as one whose posted input data might
(or might not) need validation.

If filters are applied to the controller class instead of individual methods, they will have an
effect on all action methods exposed by the controller.

All the attributes listed in Table 4-7 derive from base class FilterAttribute, which defines a base
property—Order. The Order property indicates the order in which multiple attributes will
be applied. Note that by default the Order property is assigned a value of –1, which means
that the order is unspecified. However, any filter with an unspecified order is always executed
 before a filter with a fixed order.

 Chapter 4 Inside Controllers 157

An important attribute is not listed in Table 4-7 because it is an abstract class—the
ActionFilter attribute. This class represents the base class for all action filter attributes—that
is, those attributes that allow you to execute custom code before and after the execution
of the action method and before and after the generation of the result. The ActionFilter
 attribute class is defined as follows:

public abstract class ActionFilterAttribute : FilterAttribute,

 IActionFilter,

 IResultFilter

{

 protected ActionFilterAttribute();

 public virtual void OnActionExecuted(ActionExecutedContext filterContext);

 public virtual void OnActionExecuting(ActionExecutingContext filterContext);

 public virtual void OnResultExecuted(ResultExecutedContext filterContext);

 public virtual void OnResultExecuting(ResultExecutingContext filterContext);

}

Of all the attributes listed in Table 4-7, only OutputCache and AsyncTimeout derive directly
from ActionFilter. So what’s the ultimate purpose of the ActionFilter attribute? It is the base
class from which you can create your own custom action filters. Examples of custom action
filters are a component that logs the method’s execution and, perhaps, a component that
applies GZIP compression to any response sent out by a given action method. I’ll cover
 customizable components of ASP.NET MVC–like action filters in Chapter 11, “Customizing
ASP.NET MVC.”

Figure 4-6 diagrams the steps performed during the execution of an action method, taking
into account action filters.

Authorize filter

Got
authorization?

HttpUnauthorized
Result

No

No

Yes

Yes

Should validate
input?

ValidateInput filter

Executing action

Executed action

Executing result

Executed result

Action Method

Action Result

FIGuRE 4-6 Invoking an action method with filters

158 Part II The Core of ASP.NET MVC

Any exceptions resulting from the execution of the action method will be trapped by the
 filter installed with the HandleError attribute, if any.

The Authorize Attribute
You use the Authorize attribute when you want to make sure that only authorized users can
gain access to a particular method or to any action methods in a given controller. Here’s an
example:

[Authorize]

public ActionResult Index()

{

.
 .
 .

}

In this way, the method executes only if the current user is authenticated. No check is made
against the user name or role. To enforce only certain users or roles, you simply add more
named parameters to the attribute, as shown here:

[Authorize(Roles="admin, poweruser", Users="DinoE, FrancescoE")]

public ActionResult Index()

{

.
 .
 .

}

If a user is not authenticated or doesn’t have the required user name or role, the
 authorization filter returns an HTTP 401 status code. Interestingly enough, this status code is
never displayed to the user. Let’s find out why.

By default, any ASP.NET MVC application has the FormsAuthentication HTTP module in place.
This HTTP module registers its own handler for the EndRequest application event. As expected,
the FormsAuthentication HTTP module then captures the end of the failed request that
 returns an HTTP 401 code. The FormsAuthentication HTTP module is programmed to
 automatically redirect to the login page if an HTTP 401 status code is detected.

As a result, if you attempt to invoke an action method without being authenticated and
 authorized, you are redirected to the login page. (See Figure 4-7.)

Note that the Authorize attribute doesn’t distinguish between users who are not logged in
and logged-in users that do not have the rights to invoke a given action method. In both
cases, the attempt to call the action method fails and the user is redirected to the
login page.

 Chapter 4 Inside Controllers 159

FIGuRE 4-7 An unauthorized user is redirected to the login page.

You might or might not like this behavior. If you do not, one thing you can do is create
an enhanced attribute class, as shown here:

public class AuthorizeExAttribute : AuthorizeAttribute

{

 public override void OnAuthorization(AuthorizationContext filterContext)

 {

 base.OnAuthorization(filterContext);

 CheckIfUserIsAuthenticated(filterContext);

 }

 private void CheckIfUserIsAuthenticated(AuthorizationContext filterContext)

 {

 // If Result is null, we're OK

 if (filterContext.Result == null)

 return;

 // If here, you're getting an HTTP 401 status code

 if (filterContext.HttpContext.User.Identity.IsAuthenticated)

 {

 ViewResult result = new ViewResult();

 result.ViewName = "Error";

 filterContext.Result = result;

 }

 }

}

160 Part II The Core of ASP.NET MVC

In the new class, you override the OnAuthorization method and run some extra code to
check whether you’re getting HTTP 401. If this is the case, you then check whether the
 current user is authenticated and redirect to your own error page. The net effect is that if
you’re getting HTTP 401 because the user is not logged in, you’ll go to the log-in page.
Otherwise, if the request failed because of authorization permissions, the user will receive
a friendly error page. Using the new attribute couldn’t be easier:

[AuthorizeEx(Roles="admin", Users="DinoE")]

public ActionResult Index()

{

.
 .
 .

}

Note This said, however, I wonder whether a more radical solution wouldn’t be even better.
What if you prevent users from accessing protected resources prior to the users attempting to
access them by simply disabling or hiding links and buttons? In this case, there would be no need
to worry about why the request failed.

The HandleError Attribute
You use the HandleError attribute when you want to set up a safety net to protect your
 controller (or just a particular method) from run-time exceptions. The HandlerError attribute
tells the ASP.NET MVC framework that a custom error page should be displayed in lieu of the
standard yellow screen of death if an unhandled exception occurs.

The default custom error page is error.aspx, which is defined under the Views\Shared folder.
Note, though, that you can override this error page by defining another error.aspx page in
the controller-specific folder under the Views folder.

When you attach the HandleError attribute to a method (or, more likely, to the whole
 controller class), you won’t notice any special behavior on your development machine until
you modify the web.config file, as shown next. Note that you must modify the global
web.config file, not the web.config file you might find under the Views folder:

<customErrors mode="On">

</customErrors>

With the default settings for the customErrors section, only remote users will see a generic
error page. Local users (for example, developers) will be deliberately shown the classic error
page with detailed information about the stack trace.

 Chapter 4 Inside Controllers 161

By default, the HandleError attribute catches any exceptions both during the execution of
the action method and the subsequent rendering of the view. You can, however, restrict your
control over only a few exceptions, as shown here:

[HandleError(ExceptionType=typeof(NullReferenceException), View="SyntaxError")]

[HandleError(ExceptionType=typeof(InvalidOperationException), View="InternalError")]

public ActionResult Index()

{

.
 .
 .

}

The preceding code won’t be able to trap unhandled exceptions beyond the two exception
types explicitly listed. If you want to handle all exceptions in a default way and just provide
two personalized views for certain exceptions, you add a parameterless HandleError attribute
to the action method.

In Chapter 8, “The ASP.NET Infrastructure,” I’ll return to the topic of exception handling in
ASP.NET MVC applications to put it in a wider perspective that includes search-engine
 optimization and redirection.

Note Any views you specify for error handling will be first sought in the controller-specific
folder under the Views folder and then in the Shared folder under Views.

The OutputCache Attribute
The OutputCache attribute integrates ASP.NET MVC with the output-caching feature of
 classic ASP.NET. Using the attribute is trivial:

[OutputCache(Duration=10, VaryByParam="None")]

public ActionResult Index()

{

.
 .
 .

}

The Duration parameter indicates in seconds how long the method’s response should stay
cached in memory. The VaryByParam attribute, on the other hand, indicates how many
 distinct versions of the response you should cache—one for each distinct value of the
 specified property. If you use None, you tell the system you don’t want multiple versions of
the same method’s response.

162 Part II The Core of ASP.NET MVC

The ValidateAntiForgeryToken Attribute
A Cross-Site Request Forgery (CSRF) attack is easy to prepare, and it can be as disruptive as
the notorious cross-site scripting (XSS) attack. A CSRF attack consists of finding a victim who
loads a fake page into his browser on his computer. The fake page contains some hidden
script code and markup that posts some data to a server. OK, where’s the problem?

Because the post occurs from the victim’s computer, any authentication cookies on the
 machine are uploaded. If successful, a CSRF attack enables the hacker to upload his own data
through the victim’s account with the remote server and also makes him capable of gaining
full control over the victim’s credentials.

How can you avoid all of this?

ASP.NET MVC makes available a couple of tools—a helper method to generate some ad hoc
HTML markup and the ValidateAntiForgeryToken attribute.

You might want to apply the ValidateAntiForgeryToken attribute to any action methods that
work over the HTTP POST verb:

[AcceptVerbs(HttpVerbs.Post)]

[ValidateAntiForgeryToken]

public ActionResult Edit(Customer customer)

{

.
 .
 .

}

The attribute contains some code that kicks in during the authorization phase of an action
method request. At this time, the attribute code ensures the posted request contains a
 cookie and a form field with a common fixed name. If any of these items are missing,
an exception is thrown. Otherwise, the attribute ensures that the content of both the cookie
and the input field match. Figure 4-8 shows an antiforgery exception.

FIGuRE 4-8 An antiforgery exception

 Chapter 4 Inside Controllers 163

Who’s responsible for adding the security cookie and input field? That’s where the HTML
helper method comes into play. In any view that might post some critical data to the server,
add the following within a <form> tag:

<%= Html.AntiForgeryToken() %>

The Html.AntiForgeryToken method creates a cookie on your machine and adds a hidden
field to the form, as shown here:

<input name="__RequestVerificationToken"

 type="hidden"

 value="087cIVi274xnacCCSZfy+wPRwzwW4wNMRtPJFISV8EJt0Em7MsfUc7GCN2MZyN7k" />

If the action method target of the form is decorated with the ValidateAntiForgeryToken
 attribute, the content of the cookie and input field are checked before the action method is
authorized.

Note Two questions arise quite naturally. Why is CSRF so dangerous? Why is the ASP.NET MVC
antiforgery barrier so safe? CSRF is dangerous because of the nature of the Web. An action
method can be publicly invoked because it’s there on the Internet. Sure, you can require that the
caller be authenticated, but there’s not much you can do if the hacker uses a legitimate user to
post malicious data on her behalf. This is just what CSRF does.

The two-fold antiforgery token added by ASP.NET MVC prevents a hacker from forging an ad
hoc form. The hacker can’t create a valid cookie because she doesn’t know the content to put in
it. And even if the victim’s machine already contains an antiforgery cookie (because of a previous
legitimate operation against the site), the content of the cookie can’t be read via script to arrange
a form input field on the fly. An antiforgery cookie is HttpOnly and can’t be accessed via script.

Is this enough to protect your sites from CSRF attacks? This mechanism protects only POST
 action methods and requires cookies to be enabled on the client machine. In addition, be aware
that this barrier can be easily circumvented if other parts of your application are vulnerable to
cross-site scripts. In this case, in fact, external scripting is possible, so it is possible to read the
content of the antiforgery cookie.

The ValidateInput Attribute
In ASP.NET, any data you post is automatically validated to check whether it contains
 potentially dangerous characters. The check spans the data in the posted form, the query
string, and cookies. As an example, if you attempt to enter HTML tags in a form field, when
submitting it you will inevitably incur a request validation exception. The same occurs in
ASP.NET MVC.

In classic ASP.NET, this feature is controlled via the ValidateRequest Boolean property
that you can set on a per-page basis via the @Page directive. Alternately, you can set the
 property for all pages in the application by tweaking the web.config file.

164 Part II The Core of ASP.NET MVC

The built-in validation layer for the requested content certainly is not a silver bullet, and
many times it becomes more of an issue than a lifesaver. It’s not uncommon for developers
to just disable automatic request input validation and replace it with a made-to-measure
 custom validation layer.

In ASP.NET MVC, though, the techniques in classic ASP.NET that disable request validation do
not work. Alternately, you are given the ValidateInput attribute:

[AcceptVerbs(HttpVerbs.Post)]

[ValidateInput(false)]

public ActionResult Edit(Customer customer)

{

.
 .
 .

}

The preceding code disables any built-in input validation on the content being posted to the
Edit action method. Rest assured that it’s safe to disable automatic input validation only if
you add your own validation layer for input data. Failure to do so properly and you’re inviting
disaster, however.

Invocation Attributes
All the attributes we considered so far can be applied to both controllers and individual
methods. A couple of other attributes—specifically, AcceptVerbs and ActionName—are useful
only if applied to action methods.

The AcceptVerbs attribute allows you to specify which HTTP verb is required to execute
a given method. Let’s consider the following example:

[AcceptVerbs(HttpVerbs.Post)]

public ActionResult Edit(Customer customer)

{

.
 .
 .

}

Given that code, it turns out that the Edit method can’t be invoked using a GET. If no
AcceptVerbs attribute is specified, the controller default action is to process the request as
GET. Note that multiple AcceptVerbs on a single method are not allowed. Your code won’t
compile if you add multiple AcceptVerbs attributes to an action method. The AcceptVerbs
 attribute takes any value from the HttpVerbs enum type.

public enum HttpVerbs

{

 Get = 1,

 Post = 2,

 Put = 4,

 Delete = 8,

 Head = 0x10

}

 Chapter 4 Inside Controllers 165

In ASP.NET MVC 2, GET, POST, and PUT verbs can be associated with methods using simpler
attributes: HttpGet, HttpPost, and HttpPut, respectively.

You perform an HTTP GET command when you follow a link or type the URL to the address
bar. You perform an HTTP POST when you submit the content of an HTML form. Any other
HTTP command can be performed only via AJAX or perhaps from a Windows client that
sends requests to the ASP.NET MVC application.

The ability to assign a specific verb to a given action method naturally leads to duplicate
method names. Two methods with the same name are acceptable in a controller class as long
as they accept distinct HTTP verbs. Otherwise, an exception will be thrown, because ASP.NET
MVC doesn’t know how to resolve the ambiguity.

The ActionName attribute allows you to decouple the method name from the action name.
The following code is perfectly valid:

[ActionName("Edit")]

[AcceptVerbs(HttpVerbs.Post)]

public ActionResult EditViaPost(string id)

{

 string customerID = id;

 return RedirectToAction("Edit",

 new RouteValueDictionary(new { id = customerID }));

}

[ActionName("Edit")]

[AcceptVerbs(HttpVerbs.Get)]

public ActionResult EditViaGet(string id)

{

.
 .
 .

 return View("Edit");

}

The code features a controller class with two methods that have different names but share
the same ActionName attribute. The code works as long as the two methods accept different
HTTP verbs. In particular, note that the EditViaPost method redirects to the action method
named Edit. Because a redirect is actually a GET, the EditViaGet method will be invoked next.

Another scenario where the ActionName attribute is useful is when you have overloaded
methods in a controller class. In this case, the attribute helps you to disambiguate the
 references. Here’s an example:

[ActionName("Refresh")]

[AcceptVerbs(HttpVerbs.Post)]

public ActionResult Update(string id)

{

 // Refreshes the entire record

.
 .
 .

}

166 Part II The Core of ASP.NET MVC

[ActionName("Update")]

[AcceptVerbs(HttpVerbs.Post)]

public ActionResult Update(string id, string company, Contact contact)

{

 // Selectively updates only company and contact

.
 .
 .

}

Action Selector Attributes
The AcceptVerbs attribute as well as the aforementioned NonAction attribute have the
base class in common. In particular, both attributes are action selector attributes in that
they decide when and how an action method is invoked. Starting from the base class
ActionMethodSelectorAttribute, you can create your own action selector attributes.

The ActionMethodSelectorAttribute class is a simple abstract class and contains just one
 method to override:

public abstract class ActionMethodSelectorAttribute : Attribute

{

 protected ActionMethodSelectorAttribute()

 {

 }

 public abstract bool IsValidForRequest(

 ControllerContext context,

 MethodInfo methodInfo);

}

The implementation of the IsValidForRequest method is entirely up to you. All that matters
is which Boolean value you return from the method. True means that the method can be
 executed; false indicates that the method is not a good match for the request.

The following code shows a selector attribute that enables any tagged method to run only
on a particular day of the week. (Admittedly, this is not a piece of code you can likely reuse,
but it’s certainly an amusing and illustrative example.)

public class DayMethodAttribute : ActionMethodSelectorAttribute

{

 private DayOfWeek _dayOfWeek = DayOfWeek.Sunday;

 public DayMethodAttribute(DayOfWeek day)

 {

 _dayOfWeek = day;

 }

 public override bool IsValidForRequest(

 ControllerContext controllerContext,

 MethodInfo methodInfo)

 {

 return IsToday();

 }

 Chapter 4 Inside Controllers 167

 private bool IsToday()

 {

 return (DateTime.Now.DayOfWeek == _dayOfWeek);

 }

}

The IsValidForRequest method simply checks whether the current day of the week matches
the expected day of the week associated with the method. Here’s how you attach the
 attribute to a method:

[DayMethod(DayOfWeek.Tuesday)]

public ActionResult Index()

{

 // This method runs only on Tuesdays

.
 .
 .

}

More serious and useful examples of action selector attributes are attributes that enable a
method to execute only if it has been invoked through an AJAX call, if it has been invoked
from a particular IP address, or if the request contains a given header.

Writing a Controller
Even though IController and ControllerBase are defined and publicly documented, it’s not
recommended that you build your controllers from the ground up. Inheriting from Controller
saves you a lot of preparatory work without limiting your programming power.

The writing of a controller class can be summarized in two simple steps: creating a class that
derives from Controller and adding a bunch of public methods.

The definition of the range of methods that belong to a particular controller, instead,
is a very delicate art and deserves a bit of preliminary analysis. Another point that
 deserves some attention is to decide whether or not you actually need to create your own
 application-specific base controller class.

Design of a Controller Class
Visual Studio makes it easy to create your own application-specific base controller class.
It tells you to right-click on the Controllers folder in the open ASP.NET MVC project and
choose to add a new controller class, as shown in Figure 4-9.

Visual Studio also offers to create a bunch of action methods for you that address common
CRUD scenarios. Is that really all that you need?

168 Part II The Core of ASP.NET MVC

FIGuRE 4-9 Adding scaffolding for a new controller in Visual Studio

Honestly, the Visual Studio facilities are good at making sense of ASP.NET MVC and
its controller objects, but they’re of little help when it comes to designing a real-world
application.

You devise your controller classes based on two factors: granularity and responsibilities.
The final set of controller classes should effectively meet the needs of the presentation layer,
be easy to test, be easy to maintain and evolve, and map nicely to any URL scheme you
might have in mind for the application.

Mapping Functions to Controllers
In an ASP.NET MVC application, controllers exist to respond to any requests a user makes
from within the user interface. Any possible interaction between the user and the application
is typically described by a use-case. As an architect, you start from use-cases to form a clear
idea of the functions that a user should be able to perform through the application.

Your next task will simply be mapping functions to controller classes.

There are no fixed rules as far as the granularity of controller classes is concerned.
No technical reasons prevent you from having a single all-encompassing controller class;

Boykma
Text Box
Download from Wow! ebook <www.wowebook.com>

 Chapter 4 Inside Controllers 169

 likewise, there are no technical hurdles blocking you from having one controller class for
each possible request.

You’re now at the point of partitioning off the set of functions in a balanced number of
 controller classes. How you do that depends on the functions and, more importantly, on
the vision of the application that emerges from use-cases. As a rule of thumb, you should
 endeavor to have one controller class for each significant entity in the domain of the problem
your application is called to solve.

In a commercial site, it’s likely that you face use-cases that require CRUD operations on
 customers, orders, and invoices. You can then start with an OrderController to let customers
create a new order as well as update or delete existing orders. In doing so, you must stay
focused on the needs of the presentation layer and put aside, as momentarily irrelevant, the
needs of the entity model for the business layer.

If you deal with orders, you likely need to deal with order details and products. However,
 although Order, OrderDetail, and Product are all good candidates to become a member of
the entity model (or domain model if you apply the domain-driven design methodology),
only Order makes sense as the inspirer of a controller class. From the user-interface
 perspective, in fact, a user will place commands only to create, update, or delete
an order. If that’s the case, it’s then OK to have an OrderController, but it’s not OK to have
an OrderDetailController. A quick rule is the following:

Have a controller for each business entity that is directly exposed to the presentation layer.

This might be only the first pass, though.

Suppose that one of the use-cases require you to let users view invoices. An InvoiceController
class will then be in order to serve the users’ needs. In a commercial site, though, you’ll likely
provide a back-office section for administrative work, such as processing orders and invoices.
In this case, it might be useful to have a distinct controller to support back-office operations
on orders and invoices. Another quick rule is the following:

Have a controller for each business entity that is directly exposed to the presentation layer
and for each operational context.

In the end, the mapping of functions to controllers, and the subsequent mapping of
 methods to controllers, is certainly not an exact science. However, with the correct and
 systematic application of a key design principle, you can really achieve a design that’s
 acceptable to all stakeholders in the project. The principle is the Single Responsibility
Principle (SRP). The two quick rules outlined earlier descend from SRP as applied to
 controllers in an MVC scenario.

170 Part II The Core of ASP.NET MVC

The Single Responsibility Principle
The essence of SRP is that any software module—whether a class, a service, a
 component or even a procedure—should have just one reason to change. What, then,
is a “reason to change”?

A class that focuses on doing just one thing needs to be changed only if requirements
change for that single feature. Hence, a class that focuses on doing just one thing has
just one reason to change.

The principle stresses the need to have highly cohesive classes that expose a set of
strongly and logically related methods. All methods in a class contribute to serve just
one purpose—the single responsibility of the class. SRP is about cohesion, and in
software, cohesion measures the distance between the logic expressed by the various
methods of a class. To get a better grasp of software cohesion, think for a moment
about what cohesion means in another field—chemistry. In chemistry, cohesion is
a physical property of a substance that indicates the attraction existing between like
molecules within a body. Methods in the body of a class should be similar to like
 molecules in the body of a substance.

So SRP is about having classes with just a few methods. But how few? The concept
of “a few” here is rather vague and relates to the actual single responsibility. It’s
 impossible to set a physical boundary for “a few” and say, for example, that it can never
 exceed 10 or 30. A class should have only the methods that logically participate in the
 implementation of a single purpose.

This said, it’s hard to imagine an SRP-compliant class with 30 or more methods. If this is
the case, well, you’re probably giving a class a single responsibility—but too big of one!
(A quick rule of thumb is keeping an eye on the vertical scrollbar when you edit the file
in Visual Studio. Ideally, the scrolling area is kept to a minimum.)

Mapping Behavior to Methods
All in all, the trickiest part of the design process is mapping functions to controllers. After you
have established a comprehensive list of controllers, it should be clear which methods belong
to each controller. A controller’s methods are known as action methods—and the name
couldn’t be more appropriate. In a controller class, you’re going to have one method per user
action that falls under the (single) responsibility of the controller.

 Chapter 4 Inside Controllers 171

How do you code an action method? Earlier in the chapter, I identified some common
steps that all action methods should implement. The template of an action method can be
 summarized as follows:

n Get input data An action method can get input arguments from a couple of
 sources—route values and collections exposed by the Request object. ASP.NET MVC
doesn’t mandate a particular signature for action methods. For testability reasons, it’s
preferable that any input parameter is received through the signature. Avoid, if you
can, methods that retrieve input data programmatically from Request. Preconditions
also help to ensure that no incorrect values are passed down the layers of the system.

n Perform the task At this point, the method does its job based on input arguments
and expected results. Most of the time, the method needs to interact with the middle
tier and any interaction takes places through ad hoc dedicated services. Validation of
calculated values occurs at this stage.

n Fill the view model At the end of the task, any (computed or referenced) values that
should be incorporated in the response are added to the view model. The view model
can be a plain dictionary of name/value pairs or a view-specific, strongly typed object.

n Prepare the result object In ASP.NET MVC, a controller’s method is not responsible
for producing the response itself. It is, however, responsible for triggering the process
that will use a distinct View object to render content to the output stream. The method
identifies the type of response (file, plain data, HTML, JavaScript, or JSON) and sets up
an ActionResult object as appropriate.

Does this sound easy overall? Well, another tricky aspect is how you devise the code that
performs the task.

Action Methods and Stereotypes
Generally speaking, an action method has two possible roles. It can play the role of a
 controller or it can be a coordinator. For completeness, I should say that the method can also
be a service provider; however, this won’t likely happen in real-world applications.

Where do words like controller, coordinator, and service provider come from? Needless to say,
in this context the word controller has nothing to do with an ASP.NET MVC controller class.

These words refer to object stereotypes, a concept that comes from a methodology known as
Responsibility-Driven Design (RDD). Normally, RDD applies to the design of an object model,
but some of its concepts also apply neatly to the relatively simpler problem of modeling the
behavior of an action method.

Note For more information about RDD, check out Object Design: Roles, Responsibilities,
and Collaborations, by Rebecca Wirfs-Brock and Alan McKean (Addison-Wesley, 2002).

172 Part II The Core of ASP.NET MVC

A stereotype refers to a set of traits that characterizes the behavior of an object or, as in this
case, a method. Table 4-8 details the RDD stereotypes that might apply to an action method.

TABLE 4-8 Stereotypes that might apply to an action method

Stereotype Description

Controller Refers to a behavior in which the method directs activities and makes most of
the important decisions regarding its assigned task.

Coordinator Refers to a behavior in which the method delegates work to other components
and is limited to orchestrating the various steps of its assigned task.

Service provider Refers to a behavior in which the method just performs a particular operation
with no interaction with the outside world.

This role doesn’t realistically apply to an action method because it implies
an overall, one-step, simple task that doesn’t require connections to other layers
or tiers. It would be good for quick demos, but not for a real-world application.
In RDD, a service provider is commonly a component that controllers and
 coordinators work with.

So should an action method play the role of a controller or coordinator?

That mostly depends on the architecture of your business layer. An ASP.NET MVC controller
class belongs to the presentation layer and needs to get in touch with other layers to
 perform any significant task. Figure 4-10 provides a graphical view of a classic layered
 architecture focused on ASP.NET MVC on the presentation layer.

Controllers Service Layer
Repository

Persistence

DB

Internal components

Entity Model

Views ViewData

Presentation
Layer Business Logic Layer

Data
Access
Layer

FIGuRE 4-10 A typical layered architecture that is common to many ASP.NET applications

If you implement the Service Layer pattern in the Business Logic Layer (BLL), your action
methods simply delegate the performance of their task to a method on the service layer:

[AcceptVerbs(HttpVerbs.Post)]

public ActionResult Update(Customer customer)

{

 // The code below determines a tight relationship between the controller

 // and service layer. The service instance should be injected into the

 // controller class instead of being created.

 Chapter 4 Inside Controllers 173

 CustomerServiceLayer service = new CustomerServiceLayer();

 service.UpdateCustomer(customer);

 // Back to the Edit view

 return View("Edit");

 }

By design, a service layer is made of coarse-grained methods that map to UI functions. This is
to say that from an action method you can easily find a matching method to call on the
 service layer. In this case, your action method clearly plays the role of the coordinator—which
is the most desirable option from a testing and maintenance perspective.

If you implement the Repository pattern, or if you just expose the native persistence interface
(for example, Entity Framework’s ObjectContext object), you end up with an action method
that plays the role of the controller. It incorporates all the logic necessary to perform the task.
Here’s a code snippet if you have direct access to the persistence layer:

[AcceptVerbs(HttpVerbs.Post)]

public ActionResult Update(Customer customer)

{

 // Get the entity model handle

 MyAppEntities context = new MyAppEntities();

 // Apply changes

 // This pseudo-syntax is based on features in Entity Framework 4

 context.Customers.ApplyChanges(customer, ...);

 // Save to storage

 context.SaveChanges();

 // Back to the Edit view

 return View("Edit");

}

A solution in which the action method gains direct access to the persistence layer results in
intrinsically more coupled code that can get even worse as the complexity grows. You clearly
see that, in this case, the action method is directing activities and making any decisions
 required for the task to perform its duties.

Let’s consider the Repository pattern using an update scenario. If you have implemented the
Repository pattern, your update action code will look like this:

[AcceptVerbs(HttpVerbs.Post)]

public ActionResult Update(Customer customer)

{

 // Tight coupling between controller class and repositories. The

 // instance of the repository should ideally be injected into the controller.

 CustomerRepository rep = new CustomerRepository();

 rep.UpdateCustomer(customer);

 // Back to the Edit view

 return View("Edit");

}

174 Part II The Core of ASP.NET MVC

So what’s the difference between this approach and the Service Layer pattern? Why is it that
using a repository configures a controller role, whereas using the service layer upgrades the
action method to the rank of a coordinator? Is a coordinator role always preferable?

Action Methods: Coordinator vs. Controller
Admittedly, you might not see the difference between a coordinator and a controller from
the preceding trivial code. It’s exactly the complexity of the code, however, that constitutes
the difference. A service layer refers to a much higher level of abstraction than a plain
 repository. As mentioned earlier, the service layer belongs to the BLL, whereas the repository
is part of the DAL. The repository encapsulates only data access operations; the service layer
encapsulates all operations in the use-case being implemented.

In a more complex scenario, the performance of a UI-invoked task likely spans multiple
 entities and repositories and requires multiple database operations. If this is the case, you
end up filling the action method with multiple calls to repositories and perhaps internal BLL
components. The overall code then slowly leads the action method into a controller role.

But it doesn’t end there. Giving an action method the role of the coordinator gets you a
couple of nontrivial benefits.

First, testing the controller in isolation is much easier because you have to mock up only one
dependency—the service layer class—which is a class of yours. If the controller depends on,
say, Entity Framework, you will have a much harder time testing in isolation.

Second, think about deployment and scalability. The controller lives on the Web server
 within the boundaries of the ASP.NET worker process. What about the DAL? Ideally, the
DAL lives on the same machine as the database. If you have a distinct database server,
 either you end up placing a bunch of remote database calls (when the DAL is in the same
tier as controllers) or, worse, you place a number of cross-tier calls to the DAL (when the
DAL is on the database server). With a service layer, you make just one cross-tier call from
the presentation per action. In addition, you have an extra layer to scale out if you have
 scalability issues.

Note If you’re considering the use of a simpler Repository layer in the DAL and then decide
to place it on a tier distinct from controllers, you have the problem of remoting the Repository
interface. In practice, this means creating a Windows Communication Foundation (WCF) service
around your repository classes. At this point, you probably want to make the WCF service
 interface a bit chunky to avoid the RPC-like communication antipattern. In doing so, you simply
move from a Repository pattern to a Service Layer pattern. Think of it in advance then!

 Chapter 4 Inside Controllers 175

Design Is Design, Regardless of Whether
or Not It’s for the Web
Although ASP.NET MVC gently leads you down the right path for software design, it
doesn’t really have the superhuman power of stopping you from screwing things up. Even
in the strongly object-oriented world of ASP.NET MVC, you can end up writing bad code.

As I see things, one of the biggest differences between Web Forms and ASP.NET MVC
from the developer’s standpoint is that ASP.NET MVC requires you to possess some
design skills before you can effectively start and to have a clear architectural vision of
what you’re building. Put another way, ASP.NET MVC is not as forgiving as Web Forms
can be and makes learning as you go significantly harder. Trial and error can really be
a dangerous approach in ASP.NET MVC.

Want practical advice? Don’t mistake ASP.NET MVC views and Web Forms pages.
They’re actually the same thing as far as display is concerned. However, they are
 radically different entities as far as design is concerned. When you design a Web Forms
application, you focus on pages and you map functionalities to pages. In ASP.NET MVC,
you should focus on functions instead and map them to controllers and methods.
A view in ASP.NET MVC, therefore, is simply a piece of the infrastructure that merges
a template for the page with some input data. No code at all belongs to the view.

To complete the parallel, in Web Forms a page mixes a template with code and the code
is responsible for generating data and for mapping data to elements in the template. It is
a much more entangled graph of relationships that forms a (perfectly working) black box.

The way you approach the design of functionalities in ASP.NET MVC is different and
requires preparation, skills, and possibly an unbiased mind. If you are still stuck finding
the best way to render a “page” as a “view,” the best thing you can do is add a plain
Web Forms page to an ASP.NET MVC application.

The right way to approach ASP.NET MVC is by the classic rules of analysis and design.
You identify the functions that need to be implemented and find the right component
that can take care of that. This component will return some output values to you. You
pass these values to a component that will merge them into a template to produce
HTML. In ASP.NET MVC, design is plain design; it’s not different from the design of
a Windows or Windows Presentation Foundation (WPF) application or a service. Gone
are the days when a Web application has to be devised (if not implemented) using
a made-to-measure set of principles and design guidelines.

176 Part II The Core of ASP.NET MVC

Should You Use Your Own Base Class?
An aspect you might want to seriously consider when writing a controller class is adding
an extra layer of common functionality in an intermediate controller class. You define your
 application-specific base controller class and inherit your working controllers from there. In this
way, you can have available in all of your working controllers an additional set of properties.

The question mark in the title of the section suggests that there might be situations in which
an application-specific base controller class is not required. Frankly, I believe you should
 always have your own base class for any application of some complexity.

How should you measure complexity here? The number of requirements? The frequency of
requirements changes? Complexity is a nebulous concept and, overall, something that is hard
to describe but easy to recognize when you see it.

As far as ASP.NET MVC is concerned, I’d say that when you start having quite a few
 controllers, you might find it useful and more productive to move some common
 functionalities out to a superclass.

Signature of a Controller SuperClass
A firm point about the new superclass is that it will inherit from Controller. The following
class definition doesn’t really move any code around, but it creates an extra layer that adds
 flexibility to the whole solution:

public class MyControllerSuperClass : Controller

{

}

The next question is also the most critical—what kind of functions would you add to the
superclass?

The MyControllerSuperClass class creates a safe and clean environment for overriding some
of the Controller virtual methods without mixing action methods and internal features.
For example, you can override the ExecuteCore method of Controller to add logging
capabilities:

public class MyControllerSuperClass : Controller

{

 // We should make the setter internal and provide for it during the construction

 // of the controller. However, this is not possible unless we set up a custom

 // controller factory. We'll see how to do that in Chapter 11.

 public ILogger Logger { get; set; }

 protected override void ExecuteCore()

 {

 // Capture the name of the action being executed.

 string action = this.RouteData.GetRequiredString("action");

 Chapter 4 Inside Controllers 177

 // Log before executing

 if (Logger != null)

 {

 Logger.Log("Executing [{0}] action at {1}",

 action, DateTime.Now.ToString());

 }

 // Execute as usual

 base.ExecuteCore();

 // Log after execution

 if (Logger != null)

 {

 Logger.Log("Executed [{0}] action at {1}",

 action, DateTime.Now.ToString());

 }

 }

}

The MyControllerSuperClass superclass now features an additional member—Logger of
a custom type ILogger:

public interface ILogger

{

 void Log(string format, params object[] args);

}

MyControllerSuperClass now has a dependency on the ILogger type, which is a good
thing. It would have been much worse if MyControllerSuperClass retained a dependency
on an actual implementation of ILogger. In the preceding code, MyControllerSuperClass
 injected a member of type ILogger as an external dependency. This is a great achievement for
testability.

The preceding code doesn’t show how the Logger property initialized and when. I briefly
hinted at dependency injection, but dependency injection is the means. It doesn’t say much
about the time at which injection can occur. I’ll get back to this point in a moment. Let’s see
a couple of other features you can easily stuff in a controller superclass, such as exception
 handling and your own policy for unknown actions.

Note Dependency injection (DI) is simply a pattern according to which a class exposes injection
points for external callers to pass it references to specific objects. Common injection points are
the constructor of the class, a public property, or perhaps the signature of a method. This is what
dependency injection is all about. It turns out that any code required to retrieve and instantiate
external objects pertains to the caller. And it is fairly repetitive code. This is where Inversion
of Control (IoC) frameworks kick in. They essentially automate the implementation of the DI
 pattern. We could even say that IoC frameworks are an idiom of DI.

As you might have figured out already, some really powerful code results from the integration of
an IoC framework and a controller superclass.

178 Part II The Core of ASP.NET MVC

Centralized Exception Handling
The aforementioned HandleError attribute enables centralized exception handling for a
single action method or all methods in a controller. Filter attributes are inheritable, so if you
add HandleError to the superclass, all derived controllers automatically gain the ability to trap
exceptions:

[HandleError]

public class MyControllerSuperClass : Controller

{

.
 .
 .

}

The preceding code doesn’t prevent you from adding a more specific version of the
HandleError attribute in your actual controllers to trap a particular exception and redirect to
an ad hoc view.

In addition, you can still override the OnException method in the MyControllerSuperClass
class to set up your own exception-handling mechanism:

protected override void OnException(ExceptionContext filterContext)

{

 // Your exception handling logic here

.
 .
 .

}

The OnException method is guaranteed to be invoked whenever an unhandled exception
 occurs in the execution of the action.

Handling Unknown Actions
The controller superclass is also an excellent place to store any common logic you want to
employ to handle the invocation of an unknown action. All you do is override the method
HandleUnknownAction, as shown here:

protected override void HandleUnknownAction(string actionName)

{

 // Your logic here to handle unknown actions

.
 .
 .

}

The logic for unknown actions is good to have to avoid nasty HTTP 404 failures and possibly
a generic error view. Specifying the wrong action is logically a different error than HTTP 404.
For this reason, you might want to employ your own logic and display a nice error message

 Chapter 4 Inside Controllers 179

to the user while making it clear to search engines that the requested URL is not valid.
Furthermore, you don’t want to reiterate the same fairly vanilla logic over and over again for
each controller you write. A superclass comes to the rescue, as shown here:

protected override void HandleUnknownAction(string actionName)

{

 // Your logic here to handle unknown actions

.
 .
 .

 // Fill in the view model

 string format = "Action [{0}].[{1}] is not supported.";

 this.ViewData["Message"] = String.Format(format,

 this.ControllerMoniker, actionName);

 // Set the status code for search engines

 this.Response.StatusCode = 404;

 // Switch to a nice user-specific view from here

 this.View("CustomError").ExecuteResult(this.ControllerContext);

}

After you have caught the unknown action and performed any related tasks (for example,
logging), you are ready to display a message to the user. Typically, you want to show
both controller and action name in the message. The action name can be obtained from
the argument list; the controller name must be obtained programmatically. The new
MyControllerSuperClass.ControllerMoniker property does that by reading the controller name
from the route data:

private string _controllerMoniker = String.Empty;

public string ControllerMoniker

{

 get

 {

 if (String.IsNullOrEmpty(_controllerMoniker))

 _controllerMoniker = this.RouteData.GetRequiredString("controller");

 return _controllerMoniker;

 }

}

To inform the user that an unknown command has been sent, the simplest thing to do is
invoke the View method on the controller class to get a ViewResult object. Next, you call
ExecuteResult to render the view:

this.View("CustomError").ExecuteResult(this.ControllerContext);

Here’s some sample code that shows the CustomError view. (I’ll cover views in the next
chapter.)

180 Part II The Core of ASP.NET MVC

<h2>

<%

 string msg = "Sorry, an error occurred while processing your request.";

 if (this.ViewData.ContainsKey("Message"))

 msg = this.ViewData["Message"] as string;

%>

<% = msg %>

</h2>

Figure 4-11 shows the effect of having a handler for unknown actions.

FIGuRE 4-11 Handling an unknown action

Displaying a view is more effective than redirecting to an action or to an error page. In the
example, the HTML view based on the CustomError template is just the response to invoking
an unknown action—no extra work and no extra roundtrips.

Managing Dependencies
In ASP.NET MVC, a controller class is not simply a class with a bunch of public methods.
It is responsible, for example, for connecting to a number of external components, not the
least of which is the gateway to the middle tier. In addition, the controller is responsible for
 supporting a number of cross-cutting concerns (for example, logging, security, localized
 information to pass on to the view, or caching).

 Chapter 4 Inside Controllers 181

Each of these concerns might require an external dependency—that is, an object that must
either be instantiated by the controller or created outside the controller and passed to it.
A controller superclass is perfect for providing this infrastructure.

A way to approach the task is to define an application-wide context class that groups all
 dependencies shared by all controllers. Here’s an example:

public class ApplicationContext

{

 // Constructors

 public ApplicationContext()

 {

 Initialize(null, null);

 }

 public ApplicationContext(ServiceLayerContext context)

 {

 Initialize(context, null);

 }

 public ApplicationContext(ServiceLayerContext context, ILogger logger)

 {

 Initialize(context, logger);

 }

 // Properties

 public ServiceLayerContext ServiceLayerContext { get; private set; }

 public ILogger Logger { get; private set; }

 // Methods

 private void Initialize(ServiceLayerContext context, ILogger logger)

 {

.
 .
 .

 }

}

In ApplicationContext, you group objects that need to be instantiated and then injected in
the controller for execution and testing purposes. You won’t place properties (or methods)
here, such as ControllerMoniker, that are resolved in terms of the members of the internal
context of the controller itself.

The method Initialize is responsible for resolving any dependencies for which an explicit
value is not provided as an argument:

private void Initialize(ServiceLayerContext context, ILogger logger)

{

 // Ensures that ServiceLayerContext member and its child members are instantiated

 this.ServiceLayerContext = (context ?? new ServiceLayerContext());

 if (this.ServiceLayerContext.ContentServiceLayer == null)

 this.ServiceLayerContext.ContentServiceLayer = new ContentServices();

 // Repeat for any members in the service layer context

.
 .
 .

182 Part II The Core of ASP.NET MVC

 // Ensures that Logger is instantiated

 this.Logger = (logger ?? new FileLogger(...));

}

Let’s skip over the details of the ServiceLayerContext class for a moment. For now, suffice it to
say that it represents the gateway to the middle tier.

At this point, you have a unique object that groups all dependencies required by a nontrivial
controller. How would you pass this object down to the controller? Here’s some code:

public class MyControllerSuperClass : Controller

{

 public MyControllerSuperClass() : base()

 {

 }

 public MyControllerSuperClass(ApplicationContext appContext) :

 this()

 {

 _appContext = (appContext ?? new ApplicationContext());

 }

 // Fields

 private ApplicationContext _appContext = null;

.
 .
 .

 // Properties

 public ApplicationContext ApplicationContext

 {

 get

 {

 if (_appContext == null)

 _appContext = new ApplicationContext();

 return _appContext;

 }

 set

 {

 _appContext = value;

 }

 }

.
 .
 .

}

The best deal is if you can provide a double constructor—the default parameterless
 constructor plus one that receives an ApplicationContext object as an argument. The ASP.NET
MVC framework will use the default constructor to create instances of any derived class.

The second constructor is provided for testability reasons. In a unit test, in fact, you might
want to inject an instance of ApplicationContext that points to fake objects. An ad hoc
 constructor greatly simplifies this task.

 Chapter 4 Inside Controllers 183

When the default constructor is used, however, you need to provide a built-in code path that
instantiates ApplicationContext. The getter method of the property seems to be the ideal place.

The Controller’s Factory
The instantiation of a controller class is an operation that takes place outside the reach of
your code. A made-to-measure factory class takes care of that. The ASP.NET MVC framework
provides such a class in the form of DefaultControllerFactory.

The DefaultControllerFactory class defaults to using the parameterless constructor and fails
if it doesn’t exist. If you want to change something in the process of creating a controller
instance, you have no other choice than to write and register your own controller factory.
I’ll discuss this in greater detail in Chapter 11, which is dedicated to customizing the various
pieces of the ASP.NET MVC puzzle.

A nice feature you can easily implement in the factory (and exactly the feature I’ll be
 demonstrating in Chapter 11) is the use of an IoC container to resolve automatically all
 dependencies at the same time in which a new instance of the controller is created.

Note In ASP.NET MVC, it’s mandatory that the name of the controller class is made of
two tokens—a moniker and the suffix Controller. For example, valid names for classes are
HomeController, CustomerController, MenuController, and the like. However, when a method
requires you to specify a controller name (for example, one of the overloads to the Controller’s
RedirectToAction method), you should indicate only the moniker without the Controller suffix.
If you fail to do so, ASP.NET MVC won’t be able to recognize the controller class and an exception
will be thrown.

There’s just one place in the full framework where the moniker is matched to an actual controller
type—in the factory class and, specifically, in the GetControllerType method. By overriding that
method, you can circumvent the default convention of having a trailing “Controller” string in
 every controller class name. However, I’m not saying that you have to break the convention;
nonetheless, the extreme flexibility of the ASP.NET MVC framework also makes that possible.

Special Capabilities
As you have seen, the primary purpose of a controller is serving the needs of the user
 interface. Any server-side functions you need to implement should be mapped to
a controller method and triggered from the user interface. After performing its own task,
a controller’s method selects the next view, packs some data, and orders it to render.

This is the essence of the controller’s behavior. However, other characteristics are often
required in a controller, especially when controllers are employed in large and complex
 applications with particular needs, such as frequent updates to the user interface, numerous
commands to deal with, or long-running requests.

The following section covers additional capabilities you can take advantage of when working
with controllers.

184 Part II The Core of ASP.NET MVC

Grouping Controllers
How many controllers do you expect to have in your application? The answer mostly
 depends on the complexity of the application. Suppose you have 50 controllers (and assume
that you’ve balanced the responsibilities well among controllers). Typically, you end up with
all of these 50 classes packaged within the single Controllers folder of the project. And what
about views?

Under the single Views folder, you will find up to 50 subfolders, each with a bunch of view
templates such as ASPX files. In a nutshell, your project is quite messy and hard to manage.
Most of the time, a single Controllers folder is enough for many—maybe most—applications
written with ASP.NET MVC, but sometimes it’s not enough.

As of ASP.NET MVC 1.0, there is not much you can do to split the project, or just controllers,
into distinct folders. A few attempts have been made by prominent members of the ASP.NET
community to find an effective way to partition controllers into groups without breaking the
routing capabilities of ASP.NET MVC.

In ASP.NET MVC 2, however, a new feature has been added that addresses exactly this point.

The Rationale Behind Areas
Areas provides a means of partitioning large applications into multiple blocks (named areas),
each of which can be developed independently. From the perspective of developers, an area
provides a way to group controllers (and related views) in smaller and more manageable
collections.

The whole idea of areas is nothing new, as it was a feature originally offered by Castle
MonoRail—an open-source Model2-based framework for building Web applications on
the .NET platform. (See http://www.castleproject.org/monorail.) According to MonoRail, all
controllers always belong to an area and any project consists of at least one default and
 unnamed area.

Note One could even cynically say that the whole idea of ASP.NET MVC is also nothing new.
On the other hand, isn’t this what I repeatedly pointed out in Chapter 1 and Chapter 3? ASP.NET
MVC builds on top of the Model2 pattern created some 15 years ago for Java Server Pages and
more recently revamped for the .NET platform by Castle MonoRail. But it does add some nice
goodies of its own.

Software, like science, has an inherent cumulative nature: what you do today can possibly inspire
someone else tomorrow to build a similar-but-improved product which, in turn, might inspire
you and so forth in what is hopefully an endless chain. A graduate instructor of mine summed it
up when he said, “As for software reuse, steal everything you can.”

The ability to group controllers in areas is beneficial also because it leads you to partition
your application into discrete functionalities. If you feel the need to go beyond the default

 Chapter 4 Inside Controllers 185

single group of controllers, you are forced to think in terms of logical functionalities that
emerge out of your requirements. When areas are used, an application grows up as a
 collection of distinct applets managed under the umbrella of a single solution.

This said, I feel the need to reinforce the key statement about areas. Areas are not for just
any application. Areas come to the rescue when you are having a hard time taming dozens of
controllers and views. If your application deals with blogs, forums, and news logical sections,
you might want to dedicate an area to each in such a way that each area can be architected
and developed in relative isolation with no naming conflicts between controller classes and
view templates.

Defining Areas in Your Project
Visual Studio tooling for ASP.NET MVC 2 makes it easy adding areas to a project. You start
with a classic ASP.NET MVC project and then add as many areas as you need. By default,
a new ASP.NET MVC comes with the default area. By right-clicking on the project node, you
can start adding new areas. At this stage, an area is identified by its name. Figure 4-12 shows
a sample Visual Studio project with two additional areas defined—Account and Store.

FIGuRE 4-12 Areas in an ASP.NET MVC 2 project

Each area looks like a small subproject and owns its collection of controllers, views, and
 view-model classes. As in the figure, each Views folder contains its own copy of the
 web. config file. In addition, a new AreaRegistration.cs class file is added for each area.

186 Part II The Core of ASP.NET MVC

The next step for you as a developer is adding controller classes and views to the area. Doing
this within an area is in no way different from doing the same in the context of the main
application.

Two other programming aspects make areas a little bit special—adding the area token to
routes and linking views across different areas.

Registering Routes to Areas
The use of areas is not transparent to the ASP.NET MVC machinery. Because areas are a way
to group controllers, the routing subsystem must receive an additional piece of information
that identifies the area the controller belongs to.

Imagine a URL that points to a generic Home controller you’ve created to support your
 application. In a scenario where you have no explicit areas, that controller can be resolved
only within a single environment. So if two controller classes with the same name and
 different namespaces are found, you just get an exception. When areas are used, instead, you
can have the same Home controller class defined in different namespaces and in different
areas. As a result, the routing system definitely needs the area name along with the controller
name and the action name.

This means that any helpers that produce URLs for the view must be extended to include
area names—for example, the Html.ActionLink helper that we’ll meet in person later in the
book. It also means that you must define routes that send requests to the appropriate area
based on the requested URL.

Each area comes with a system-provided registration file that defines the routes supported
by the area. Here’s an example:

public class StoreAreaRegistration : AreaRegistration

{

 public override string AreaName

 {

 get

 {

 return "Store";

 }

 }

 public override void RegisterArea(AreaRegistrationContext context)

 {

 context.MapRoute(

 "Store_default",

 "Store/{controller}/{action}/{id}",

 new { action = "Index", id = "" }

);

 }

}

 Chapter 4 Inside Controllers 187

As you can see, the default route registered in RegisterArea includes an extra data token that
matches the name of the area. The route, however, is fully customizable. In global.asax, you
use a new helper method to register routes for all areas in the project. Here’s the revised
startup method in global.asax:

protected void Application_Start()

{

 AreaRegistration.RegisterAllAreas();

 RegisterRoutes(RouteTable.Routes);

}

The RegisterAllAreas method loops through all available areas and invokes RegisterArea for
each of them.

Linking to Areas
As long as you navigate within the same area, no special measures are required to ensure
that the link is followed correctly. However, to support cross-area links, you need to resort
to an updated version of some HTML helpers, such as Html.ActionLink. As we’ll see later in
Chapter 5, an HTML helper is a method that helps you produce plain HTML literals without
writing any angle brackets.

In particular, the ActionLink helper method generates an anchor <a> tag with the correct
URL. The method is smart enough to generate a URL also from route values. Here’s how to
use the helper with areas:

<ul id="menu">

 <%= Html.ActionLink("Home", "Index", "Home",

 new { area = "" }, null)%>

 <%= Html.ActionLink("Store", "List", "Products",

 new { area = "Store" }, null)%>

The first link displays “Home” as its text and points to the Index action on the Home
 controller within the default area. The second link displays “Store” as its text and links the List
method on the Products controller within the Store area.

The area token is optional as long as you don’t cross the boundaries of the current area. Note
that you indicate the area token using the routeValues dictionary parameter in the ActionLink
list of overloads. However, to ensure that the proper overload is picked up, you also need to
add a subsequent null argument. The trailing null argument, therefore, is required only to
drive the compiler to using the right overload of the ActionLink method.

Asynchronous Controllers
Especially for server-based applications, asynchronous operations are a fundamental asset
on the way to scalability. In ASP.NET, asynchronous requests take advantage of asynchronous

188 Part II The Core of ASP.NET MVC

HTTP handlers, which are a feature of the ASP.NET platform since the first version. However,
both ASP.NET Web Forms and ASP.NET MVC provide their own facilities to make it simpler
for developers to implement asynchronous actions. In particular, ASP.NET MVC 2 provides
asynchronous controllers.

Important In ASP.NET, asynchronous pages are commonly associated with the idea of
 improving the performance of a given page that is about to perform a potentially lengthy
 operation. Although this can’t be denied, a couple of additional points should be cleared up.
First, from the user’s perspective synchronous and asynchronous requests look nearly the
same. If the requested operation is expected to take, say, 30 seconds to complete, the user
will wait at least 30 seconds to get the new page back. This happens regardless of the
 synchronous or asynchronous implementation of the page. Furthermore, don’t be too surprised
if an asynchronous page ends up taking a bit more time to complete on the single request.
So what’s the benefit of asynchronous pages?

The benefit that asynchronous pages bring to the table is that they require much less work
for the threads in ASP.NET pool. This doesn’t make lengthy requests run faster, but it does help
the system to serve non-lengthy requests as usual—that is, without special delays resulting from
ongoing slow requests. Scalability is not quite the same as performance. Or, at least, scalability
is about performance but as it applies to a different scale—that is, it applies to the whole
 application instead of the single request.

Mechanics of Asynchronous Actions
In ASP.NET MVC 1, any controller actions can run only synchronously. In ASP.NET MVC 2,
however, a new AsyncController class makes its debut, thus enabling you to define controller
actions that run asynchronously.

The overall programming model doesn’t change when you define an asynchronous action:
you still create a public method optionally using a set of attributes. These methods don’t
need to be bound to special routes and return standard action result objects. Compared to
a classic synchronous method, an async action is made of only a pair of methods—xxxAsync
and xxxCompleted, where xxx indicates the action name. I’ll get into details in a moment.
Let’s focus on the mechanics of an async action first.

In general, an async ASP.NET request is served in two distinct steps, each requiring a thread
from the ASP.NET pool. In the first step, half of the request proceeds from the beginning
to the async point. The second half resumes from the async point and completes the
 processing. The two steps do not form a continuous sequence, and there’s no guarantee
that the same thread will be serving both steps. The first half (which I’ll refer to as the
 trigger) prepares the execution of the request and stops when the lengthy operation begins.
The second half begins once the lengthy operation has terminated and finalizes the request.
(I’ll refer to the final step as the finalizer.)

What’s the async point, exactly?

 Chapter 4 Inside Controllers 189

The Async Point
The async point is the point in the execution flow when you release the thread in charge
of the trigger to the ASP.NET pool. This means that the initial ASP.NET thread is now free to
serve other incoming requests, and it is no longer bound to wait for the lengthy operation to
complete. This is where the benefit of async operations lies.

What happens between the async point and the moment in which the request resumes and
completes? Which thread is taking care of the lengthy operation? (You do need a thread—
any thread, but a thread—to take care of any operations in Windows.)

The final step of the trigger method is to return an IAsyncResult object. An object that
 supports the IAsyncResult interface stores state information for an asynchronous operation
and provides a synchronization object to allow threads to be signaled when the operation
completes. In the Microsoft .NET Framework, there are a few common ways to get
an IAsyncResult object. A typical example is invoking a BeginXXX method such as BeginRead
on the FileStream class. Another great example is invoking the BeginXXX method on a service
proxy. Another common scenario for asynchronous operations is when you explicitly start
a custom thread or post your work item to a pooled thread through the ThreadPool class.
You can even provide your own implementation, but do so carefully and test it well.

In any case, the ultimate purpose of a trigger method is finding another thread (from outside
ASP.NET) to take care of the lengthy operation and post the work item to it. When the post
occurs, that is the async point.

After the potentially lengthy task has been started, what happens with the ASP.NET thread
that took the request up to the async point? That thread has only to wait, in an idle state,
until the operation completes elsewhere. Asynchronous HTTP handlers in ASP.NET manage
to use an operating system thread, instead of an ASP.NET thread, to wait until the operation
completes. This system thread is obtained through a Windows-specific mechanism known
as I/O completion ports.

When the async point is reached, ASP.NET binds the pending request to an I/O completion
port and registers a callback to get a notification when the request has terminated.
The operating system will use one of its own dedicated threads to monitor the termination
of the operation, thus freeing the ASP.NET thread from the need to wait in full idle. When the
operation terminates, the operating system places a message in the completion queue. A
message in the completion queue will trigger the ASP.NET callback, which will then pick up
one of its own threads to resume and finalize the original request.

This is the general explanation of asynchronous request processing in ASP.NET. In ASP.NET
MVC 2, the various steps are a bit abstracted to hide details such as the async point, HTTP
handlers, and I/O completion ports. Let’s review the mechanics of asynchronous requests in
the context of ASP.NET MVC.

190 Part II The Core of ASP.NET MVC

Async Actions in ASP.NET MVC
As Figure 4-13 shows, in an ASP.NET MVC request the async point is placed between
the ActionExecuting and ActionExecuted events. The action invoker is responsible for
 orchestrating the various steps.

Action Method

Action Result

Async point

Executing action

Executed action

Executing result

Executed result

Initial thread

Final thread

FIGuRE 4-13 Mechanics of an asynchronous action

When the action invoker sends a notification that it is about to execute the action, the
thread engaged is still the original ASP.NET thread that picked up the request from the Web
server queue. The code running at this point is the trigger method, usually in the form of
an xxxAsync method, as the following code shows:

public void PerformLengthTaskAsync(SomeData data)

{

 // Process input

.
 .
 .

 // Post a work item to a component that can result

 // in a lengthy operation (for example, invoke a Web service)

.
 .
 .

 // That's all for now—the action is being executed elsewhere.

 // All that remains to be done is wait for it to terminate;

 // for this task, we don't want to squander an ASP.NET thread.

 return;

}

When the trigger method returns, the lengthy action is running in the care of some other
thread, possibly on some other process. The asynchronous action invoker manages to sync
up with the ASP.NET runtime so that a completion port is used to monitor the completion of
the operation. When this happens, the ASP.NET runtime puts the requests back in circulation
with a special flag that indicates it only needs to complete its second half. The first available
ASP.NET thread picks up the request and begins processing it.

 Chapter 4 Inside Controllers 191

In ASP.NET MVC, this means that the action is executed and the finalizer method is invoked.
Here’s the typical structure of a finalizer:

public ActionResult PerformLengthTaskCompleted(SomeResponse data)

{

 // Manage the model state (if any)

.
 .
 .

 // Prepare and render the view

.
 .
 .

}

The finalizer receives a custom object (or a multitude of parameters) that contains the data it
is expected to process and pass on to the view object. However, the signature of the finalizer
must be known in some way to the trigger. Let’s find out the details.

Designing Asynchronous Action Methods
Is there any difference between synchronous and asynchronous routes? In ASP.NET MVC 2,
no distinction exists at the route level. You still use the MapRoute method to define both.
(I’ll cover routes in detail in Chapter 8.)

routes.MapRoute(

 "Default",

 "{controller}/{action}/{id}",

 new { controller = "Home", action = "Index", id = "" }

);

The URL of the request is therefore processed as usual to find out the name of the controller
class. A controller that exposes asynchronous methods is expected to derive from the new
AsyncController class.

public class ServerFacadeController : AsyncController

{

.
 .
 .

}

Note that an AsyncController class can serve both synchronous and asynchronous
 requests. The name of the method conventionally indicates how the method has to be
 processed. You must be careful to avoid any ambiguity when you name your methods
in an AsyncController class. Let’s consider the following example that has a synchronous
 method and an asynchronous method:

public class ServerFacadeController : AsyncController

{

 public ActionResult PerformTask(SomeData data)

 {

.
 .
 .

 }

192 Part II The Core of ASP.NET MVC

 public void PerformTaskAsync(SomeData data)

 {

.
 .
 .

 }

 public ActionResult PerformTaskCompleted(SomeResponse data)

 {

.
 .
 .

 }

}

The preceding code will throw an exception, as shown in Figure 4-14.

FIGuRE 4-14 Ambiguous references in the name of the action

An async action is identified by name, and the expected pattern is xxxAsync where xxx
 indicates the default name of the action to execute. Clearly, if another method named xxx
exists and is not disambiguated using attributes, an exception is thrown.

The word Async is considered as a suffix and the URL required to invoke the
PerformTaskAsync method will contain only the prefix PerformTask. For example, the
 following URL will invoke the method PerformTaskAsync passing a value of 2 as a route
parameter:

http://myserver/serverfacade/performtask/2

Whether it will be resolved as a synchronous or asynchronous action depends on the
 methods you actually have in the AsyncController class: for a given action name, you can only
have either a synchronous or an asynchronous method match.

 Chapter 4 Inside Controllers 193

As mentioned, the xxxAsync method identifies the trigger of the operation. The finalizer of
the request is another method in the controller class named xxxCompleted. You’ll get another
exception if a proper xxxCompleted method cannot be found.

Note the different signature of the two methods defining the asynchronous action.
The trigger is expected to be a void method. If you define it to return any value, the return
value will be simply ignored. The input parameters of the xxxAsync method are subject to
model binding as usual. The finalizer method returns an ActionResult object as usual, and it
receives a custom object that contains the data it is expected to process and pass on to the
view object. A special protocol is necessary for matching the values calculated by the trigger
to the parameters declared by the finalizer.

Coding Asynchronous Action Methods
In an asynchronous controller class, each asynchronous method is actually a pair of methods
and an ad hoc invoker will call each at the right time. In particular, the invoker needs a
counter to track the number of individual operations that compose the action so that it can
synchronize results before declaring the overall action terminated. In light of this, here’s the
typical structure of the internal code of a pair of trigger/finalizer methods:

public void PerformTaskAsync(SomeData data)

{

 AsyncManager.OutstandingOperations.Increment();

 var response = new SomeResponse();

.
 .
 .

 // Do some remote work (for example, invoke a service)

.
 .
 .

 // Terminate operations, and prepare data for the finalizer

 AsyncManager.Parameters["data"] = response;

 AsyncManager.OutstandingOperations.Decrement();

}

public ActionResult PerformTaskCompleted(SomeResponse data)

{

 // Prepare the view (for example, massage received data into a view model class)

 var model = new PerformTaskViewModel(data);

.
 .
 .

 return View(model);

}

The OutstandingOperations member on the AsyncManager class provides a container that
maintains a count of pending asynchronous operations. The OutstandingOperations member

194 Part II The Core of ASP.NET MVC

is an instance of the OperationCounter helper class and supplies an ad hoc API to increment
and decrement. The Increment method is not limited to unary increments, as the following
code demonstrates:

AsyncManager.OutstandingOperations.Increment(2);

service1.GetData(...);

AsyncManager.OutstandingOperations.Decrement();

service2.GetData(...);

AsyncManager.OutstandingOperations.Decrement();

The Parameters dictionary on the AsyncManager class is used to group values to be passed
as arguments to the finalizer method of the asynchronous call. The Parameters dictionary will
contain an entry for each parameter to be passed to the finalizer. If a match can’t be found
between entries in the dictionary and parameter names, a default value is assumed for the
parameter. The default value results from the evaluation of the default(T) expression on the
parameter’s type. No exception is raised unless an attempt is made to access a null object.

Attributes of Asynchronous Action Methods
Any applicable filter attributes for an asynchronous method must be placed on the trigger
method xxxAsync. Any attributes applied to the finalizer will be ignored. If an ActionName
attribute is placed on xxxAsync to alias it, the finalizer must be named after the trigger
 method, not the action name. Consider the following code:

[ActionName("Test")]

public void PerformTaskAsync(SomeData data)

{

.
 .
 .

}

public ActionResult PerformTaskCompleted(SomeResponse data)

{

.
 .
 .

}

You need to use the name Test in the URL, but you don’t need to change anything in the
names of trigger and finalizer methods. Also, note that the view name, instead, is being
resolved in terms of the action. So, in this case, the default name of the view is Test, not
PerformTask.

In addition, you can set a timeout on a per-controller or per-action basis by using the
AsyncTimeout attribute:

[AsyncTimeout(3000)]

The attribute is invoked by ASP.NET MVC before the asynchronous action method executes.
The duration is expressed in milliseconds and defaults to 30 seconds. By default, all methods
are subject to this timeout. If you don’t want any timeout, you set that preference explicitly

 Chapter 4 Inside Controllers 195

by using the NoAsyncTimeout attribute. No timeout is equivalent to setting the timeout to
the value of System.Threading.Timeout.Infinite.

By setting the Timeout property of the AsyncManager object, on the other hand, you can set
a new global timeout value that applies to any call unless it’s overridden by attributes at the
controller or action level.

Candidates for Asynchronous Actions
Not all actions should be considered for an asynchronous behavior. Only I/O-bound
 operations are, in fact, good candidates to become asynchronous action methods on
an asynchronous controller class.

An I/O-bound operation is an operation that doesn’t depend on the local CPU for
 completion. When an I/O-bound operation is going on, the CPU just waits for data to be
processed (for example, downloaded) from external storage such as a database or a remote
Web service. Operations in which the completion of the task depends on the activity of the
CPU are, instead, referred to as CPU-bound.

The typical example of an I/O-bound operation is the invocation of a remote Web service.
In this case, the real work is being done remotely by another machine and another
CPU. The ASP.NET thread would be stuck waiting and be idle all the time. Releasing that
idle thread from the duty of waiting, and making it available to serve other incoming
 requests, is the performance gain you can achieve by using asynchronous actions or pages.

It turns out that not all lengthy operations give you a concrete benefit if they’re implemented
asynchronously. A lengthy in-memory calculation, for example, doesn’t provide you with any
significant benefit if they’re implemented asynchronously because the same CPU both serves
the ASP.NET request and performs the calculation.

On the other hand, if remote resources are involved (or even multiple resources), using
 asynchronous methods can really boost the performance of the application, if not the
 performance of the individual request.

Note How does this relate to the situation where the controller is operating as a coordinator,
as we examined earlier? In this case, the controller will probably be limited to invoking just one
method on the service layer. If the service layer is remote, almost any action can be considered
for an asynchronous implementation.

Render Actions
Controller methods exist to be mapped to routes and execute some action in response to
a request. All the logic you need to run to serve a request belongs to the selected controller
method, and the view is as passive as possible—no logic in the view and no data to be
 rendered by the view are received from the controller.

196 Part II The Core of ASP.NET MVC

This is good in theory, but is it also good in practice?

Well, there’s a common scenario whose optimal implementation is controversial in
ASP.NET MVC—rendering parts of the view that are global and shared by multiple views.
On the way to simplifying the implementation of this common scenario, ASP.NET MVC 2
 offers developers of controller classes the possibility of defining render actions.

The RenderAction Helper
A render action is a controller method that is specifically designed to be called from within
a view. A render action is therefore a regular method on the controller class that you invoke
from the view using one of the following HTML helpers: Action or RenderAction.

public static MvcHtmlString Action(this HtmlHelper htmlHelper, string actionName);

public static MvcHtmlString RenderAction(this HtmlHelper htmlHelper, string actionName);

I’ll cover HTML helpers in detail in the next chapter. For now, suffice it to say that a helper
method is a special method callable from the view that produces markup. A helper method is
usually defined as an extension method for the HtmlHelper system class.

Action and RenderAction behave mostly in the same way; the only difference is that Action
 returns the markup as a string, whereas RenderAction writes directly to the output stream.
Both methods support a variety of overloads through which you can specify multiple
 parameters, including route values, HTML attributes and, of course, the controller’s name.

So when are Action and RenderAction really helpful to justify sacrificing the design on the
 altar of implementation?

Simply put, Action and RenderAction offer a simple but effective solution to populating parts
of a view that are shared with other views and that are not directly related to the current
request. For example, suppose you have a menu to render in many of your views. Whatever
action you take in relation to your application, the menu has to be rendered. Rendering the
menu, therefore, is an action not directly related to the current ongoing request. How would
you handle that? In the next chapter, I’ll dig out the details of this aspect of ASP.NET MVC
programming. For now, I just want to present a possible solution—render actions.

In one of your controller classes, you define a method intended to be the renderer of some
view-related action. This method doesn’t need any special signature or attribute in order to
be visible from the view:

public ActionResult Menu()

{

 var options = new MenuOptions();

 options.Items.Add("File");

 options.Items.Add("Edit");

 options.Items.Add("Help");

 return PartialView("menu", options);

}

 Chapter 4 Inside Controllers 197

The content of the menu.ascx file is not relevant here; all it does is get the model object and
render an appropriate piece of markup. Let’s see the view source code for one of the pages
you might have in the application:

<asp:Content ID="Content1" ContentPlaceHolderID="MainContent" runat="server">

 <h2>Perform Some Task</h2>

 <% Html.RenderAction("Menu"); %>

 <hr />

 <!-- Remainder of the view here -->

.
 .
 .

</asp:Content>

The RenderAction helper method calls the Menu method on the specified controller (or on
the controller that ordered the current view to be rendered) and directs any response to the
output stream. In this way, the view incorporates some logic and calls back the controller.
At the same time, your controller doesn’t need to worry about passing the view information
that is not strictly relevant to the current request it is handling.

Note As you’ll see in more detail in Chapter 5, this point is controversial and it is mostly a matter of
preference. If your gut feeling says you like render actions, don’t hesitate to use them. On the other
hand, feel free to explore other solutions if you don’t want to trade design for implementation.
Whatever your final decision is, I suggest that you make it for yourself, your application, and your
team and avoid making it a dogmatic matter. It is an open point, and it will probably remain open.

Child Actions
The Action and RenderAction helper methods can call into any public method of the
 controller class. Note that the attributes take into account the ActionName attribute if
 specified. The execution of a render action, however, is not simply a call made to a method
via reflection. A lot more of this happens under the hood.

In particular, a render action is a child request that originates within the boundaries of the
main user request. The RenderAction method builds a new request context that contains
the same HTTP context of the parent request and a different set of route values. This child
 request is forwarded to a specific HTTP handler—the ChildActionMvcHandler class—and is
executed as if it came from the browser. The overall operation is similar to what happens
when you call Server.Execute in general ASP.NET programming. There’s no redirect and no
roundtrip, but the child request goes through the usual pipeline of a regular ASP.NET MVC
request and has all filters honored.

Not all filter attributes, however, should re-execute in the case of a child action. The most
illustrious example is AuthorizeRequest. In ASP.NET MVC 2, such critical filters have been
updated to check a new property on the ControllerContext class that you met earlier in the

198 Part II The Core of ASP.NET MVC

chapter—IsChildAction. The IsChildAction property is a Boolean value that indicates whether
the filter is being invoked as the result of render action or a URL action.

Another filter that needs to distinguish between regular and child requests is OutputCache.
The OutputCache filter will honor its contract and cache the output of a request only if the
request has been sent via a URL. The OutputCache filter, therefore, will ignore child requests.
What if you want to cache the output of the child action, then? The trick consists of placing
the call to RenderAction in a partial view—a user control—and setting the @OutputCache
directive on it.

By default, any action method can be invoked from a URL and via a render action. However,
any action methods marked with the ChildActionOnly attribute won’t be available to public
callers, and its usage is limited to render actions and child requests. An exception will be
thrown otherwise.

RenderAction vs. RenderPartial
Two HTML helpers exist in ASP.NET MVC 2 with similar names and overall similar behaviors:
RenderAction and RenderPartial. Both are able to load some commonly used content into the
view being rendered. When do you use which?

RenderPartial is designed to render a user control—namely, a partial view. You can have
it render only whatever is saved as an ASCX resource. This limitation doesn’t exist with
RenderAction. RenderAction, in fact, can render anything that derives from ActionResult.
However, the most significant difference—the one that determines when to use which—is
this: RenderPartial can work only with data that is available within the calling view. In a view,
if you have all the data you need and want to create a child view, RenderPartial is the way to
go. In this context, it represents a better option for performance reasons.

RenderAction, on the other hand, is preferable when you need some logic to retrieve all
the data you need for rendering. The retrieval logic, in this case, belongs to the controller.
When the data has to be retrieved—whether from the cache or through a query—
RenderAction is the way to go. A render action can be parameterless, or it can accept
 parameters as shown here:

<% Html.RenderAction("OrderList", "Order", new {CustomerId = Model.CustomerId}); %>

A common situation is when you want to display order information within a view focused
on the demographics of a customer. The preceding code snippet passes the customer ID, as
available to the view, to a method that uses that information to query for the orders.

 Chapter 4 Inside Controllers 199

Controllers and Testability
A trivial controller class with no external dependencies is ready to test and doesn’t need any
special treatment. A less trivial controller with some dependencies (perhaps on the DAL)
can still be tested as is, but it requires that you have access to the DAL and the underlying
 database anytime you run the test.

The perfect controller is not the one without dependencies. Dependencies are an absolute
must for any realistic controller. The ideal controller is the one that effectively manages all
of its dependencies by providing a way for you to inject them smoothly both for regular
 execution and during automated testing.

Making Controllers Easy to Test
A while back in the chapter, I started addressing effective ways to manage dependencies
within a controller class. Now I’m ready to finalize the discussion and demonstrate the
 benefits of a modular design for testability.

Note The whole point of testability is, in the final analysis, a false problem. I challenge anybody
to find a difference between a testable piece of code that works and an untestable piece of code
that works. All that matters is that the code just works. Does all the emphasis on testability still
make sense, then? In the end, the focus on testability is an excellent excuse to focus on better
design. Code designed for testability is inherently much better designed code. Testability and
design are strictly related, whatever way you look at them.

Basics of Testability
A broadly accepted measure for software testability is the ease with which testing can be
performed. And testing is the process of checking software to ensure that it behaves as
 expected, contains no errors, and satisfies its requirements.

Testing happens at various levels. Unit tests determine whether individual components of the
software meet functional requirements. Integration tests determine whether the software
fits in the environment and works well with other components. Finally, acceptance tests
 determine whether the completed system meets customer requirements.

Unit tests and integration tests pertain to the development team and serve the purpose of
making the team confident about the quality of the software they’re building. Unit tests, in
particular, can also serve to prevent regression failures after significant changes are entered
into the classes.

A software test verifies that a method returns the correct output in response to a given input
and a given internal state. Having control over the input and the state, and being able to

200 Part II The Core of ASP.NET MVC

observe the output, is therefore essential for testing. Your responsibility is to ensure that all
methods (and classes) that need to be tested meet these requirements. If not, you should
 endeavor to refactor your code for testability.

Dealing with Dependencies
When you test a method, you want to focus only on the code within that method. All that
you want to know is whether that code provides the expected results in the tested scenarios.
To get this answer, you need to get rid of all dependencies the method might have. If the
method, say, invokes another class, you assume that the invoked class will always return
 correct results. In this way, you eliminate at the root the risk that the method fails under
test because a failure occurred down the call stack. If you test method A and it fails, the
reason has to be found exclusively in the source code of method A and not in any of its
dependencies.

How can you neutralize dependencies when testing a method? You do so by designing the
method (and its surrounding class) to properly make use of forms of dependency injection.

Dependency injection really comes in handy here and is a pattern that has a huge impact
on testability. A class is inherently more testable if it depends on interfaces and uses
 dependency injection to receive from the outside world any objects it needs to do its
own work. Establishing these characteristics has to be the aim when you’re creating your
 controllers and related classes.

Tightly Coupled Controllers
As you saw earlier, a controller class typically invokes a class on the application’s service layer.
The application’s service layer is responsible for implementing the application logic and is
ultimately in charge of any orchestration required that involves other components in other
layers, such as BLL and DAL.

Note that the controller belongs to the presentation layer. Hence, in observance of the
 principle of layering, it can talk only to its closest layer—the business layer. The service layer
is just part of it. Here’s a typical method on a controller:

public ActionResult Find(int customerId)

{

 // Some simple forms of validation might take place here. Classic server-side

 // validation against business rules will occur in the service layer class.

.
 .
 .

 // Invoke the business logic

 var service = new CustomerServices();

 var customer = service.FindById(id);

 Chapter 4 Inside Controllers 201

 // Deal with possibly wrong return values caused by server exceptions

.
 .
 .

 // Fill the view model container

 this.ViewData["Customer"] = customer;

 // Trigger the view

 return this.View();

}

The method uses a service layer class to get information about the specified customer.
In turn, the service layer class CustomerServices uses a specific repository object to wrap any
data access code:

public class CustomertServices

{

 public IList<Customer> FindAll()

 {

 // Get any necessary data from the DAL

 var rep = new CustomerRepository();

 var customer = rep.GetAll();

 // Return data

 return customers;

 }

 public Customer FindById(int id)

 {

 // Get any necessary data from the DAL

 var rep = new CustomerRepository();

 var customer = rep.GetByID(id);

 // Return data

 return customer;

 }

}

This code works just fine. But both the CustomerController and CustomerServices classes hold
references to explicit objects and use the new operator to get instances. This code is not ideal
from a testing perspective because dependencies are hard-coded.

You need to find a way to inject in the controller class any dependencies it might have on
the service layer. Furthermore, you also need to refactor the service layer to be injected with
 dependencies on repositories.

ServiceLayerContext Class
The simplest way to inject a reference to the service layer in a controller class is to add an ad
hoc property. Instead of repeating this property for each new controller class, you might
want to add it to a tailor-made superclass.

202 Part II The Core of ASP.NET MVC

As discussed earlier, the ApplicationContext class does the trick. This class is a container
of all dependencies a controller might have. In particular, it exposes a reference to
a ServiceLayerContext object, as shown here:

public class ApplicationContext

{

 public ApplicationContext(ServiceLayerContext context)

 {

 Initialize(context, null);

 }

.
 .
 .

 // Properties

 public ServiceLayerContext ServiceLayerContext { get; private set; }

 . .
 .

}

The service layer is not made of a single class. Generally, you’ll likely have a service layer class
for each controller that needs to invoke the middle tier. The ServiceLayerContext object is,
then, another global container for all service layer classes you happen to have:

public class ServiceLayerContext

{

 public ICustomerServices CustomerService { get; private set; }

.
 .
 .

}

As you might have noticed, the ServiceLayerContext class uses an abstraction of the content
service class—the ICustomerServices interface. That’s precisely the trick. Here’s how the
 aforementioned Find method on the CustomerController class looks now:

// ApplicationContext is inherited from custom controller superclass

public ActionResult Find(int customerId)

{

 // Some simple forms of validation might take place here. Classic server-side

 // validation against business rules will occur in the service layer class.

.
 .
 .

 // Invoke the business logic

 var service = ApplicationContext.ServiceLayerContext.CustomerService;

 var customer = service.FindById(id);

 this.ViewData["Customer"] = customer;

 // Fill the view model container and trigger the view

.
 .
 .

}

 Chapter 4 Inside Controllers 203

If you design the controller to work against an abstraction and manage to provide a concrete
object that implements that abstraction, you end up with an extensible and maintainable
 design and gain a lot in terms of testability.

Propagating Testability Changes to the Service Layer
The chain of changes doesn’t end here. Methods on a typical service layer class will likely
have dependencies on the DAL. To test service layer classes effectively and in full isolation,
you also need to decouple them from DAL references. Here’s a revamped version of the
CustomerServices class:

public class CustomerServices : ICustomerServices

{

 // Constructors

 public CustomerServices()

 {

 Initialize(null, null);

 }

 public CustomerServices(ICustomerRepository custRepo,

 IOrderRepository orderRepo)

 {

 Initialize(custRepo, orderRepo);

 }

 // Properties

 ICustomerRepository CustomerRepository { get; private set; }

 IOrderRepository OrderRepository { get; private set; }

 // Methods

 public Customer FindById(int customerId)

 {

 // Get any necessary data from the DAL

 var customer = CustomerRepository.FindById(customerId);

 return customer;

 }

.
 .
 .

 // Internal members

 private void Initialize(ICustomerRepository custRepo,

 IOrderRepository orderRepo)

 {

 CustomerRepository = (custRepo ?? new CodeSampleRepository());

 OrderRepository = (orderRepo ?? new ChapterRepository());

 }

}

Also in this case, the behavior of the DAL components the service layer class depends upon
has been abstracted to an interface and a parameter-based constructor has been added to
the service layer class primarily for testability reasons. Let’s see how to write unit tests.

204 Part II The Core of ASP.NET MVC

Writing Unit Tests
A unit is the smallest part of an application that is testable—typically, a method. Unit testing
consists of writing and running a small program (referred to as a test harness) that
 instantiates classes and invokes methods in an automatic way. In the end, running a battery
of tests is much like compiling. You click a button, you run the test harness and, at the end
of it, you know what went wrong, if anything.

The most effective way to conduct unit testing passes through the use of an automated
test framework. An automated test framework is a developer tool that normally includes
a run-time engine and a framework of classes for simplifying the creation of test programs.
Choosing a framework is up to you, and quite a few excellent options exist in the
 open-source arena. A popular framework is NUnit. (See http://www.nunit.org.)

A testing framework, MSTest, is also integrated with Visual Studio. As shown in Figure 4-15,
ASP.NET MVC asks you whether you want to add a test project to your solution.

FIGuRE 4-15 Creating a unit test project

Basics of Unit Testing with MSTest
You start by grouping related tests in a text fixture. Text fixtures are just test-specific classes
where methods typically represent tests to run. In a text fixture, you might also have code
that executes at the start and end of the test run. Here’s the skeleton of a text fixture with
MSTest:

using Microsoft.VisualStudio.TestTools.UnitTesting;

.
 .
 .

[TestClass]

public class CustomerTest

{

 private Customer customer;

 Chapter 4 Inside Controllers 205

 [TestInitialize]

 public void SetUp()

 {

 customer = new Customer();

 }

 [TestCleanup]

 public void TearDown()

 {

 customer = null;

 }

 // Your tests go here

 [TestMethod]

 public void ShouldAssignCompanyNameToCustomer()

 {

.
 .
 .

 }

 . .
 .

}

You need to have tests for each significant class. A good practice is to have an XxxTest class
for each Xxx class in a given assembly.

With MSTest, you transform a plain .NET class into a test fixture by simply adding the
TestClass attribute. You turn a method of this class into a test method by using the
TestMethod attribute instead. Attributes such as TestInitialize and TestCleanup have a special
meaning and indicate code to execute at the start and end of each and every test so that no
two tests are dependent.

Let’s write out a test for a sample ContentController class that uses a service layer
 infrastructure to retrieve information about chapters. The ContentController class derives
from our base class and thus gains access to the ApplicationContext class.

Writing a Sample Unit Test
The test we’re going to write verifies that the ContentController class will successfully retrieve
information about Chapter 1 when a value of 1 is passed to its LoadChapters method. Here’s
the code of the test fixture:

[TestClass]

public class ContentControllerTest

{

 private ApplicationContext appContext;

 [TestInitialize]

 public void Setup()

 {

 appContext = new ApplicationContext();

 appContext.Logger = new FakeLogger();

206 Part II The Core of ASP.NET MVC

 appContext.ServiceLayerContext = new ServiceLayerContext();

 ICodeSampleRepository sampleRepo = new FakeCodeSampleRepository();

 IChapterRepository chapRepo = new FakeChapterRepository();

 appContext.ServiceLayerContext.ContentService =

 new ContentServices(sampleRepo, chapRepo);

 }

 [TestMethod]

 public void ShouldFindOneChapterByItsId()

 {

 // Arrange

 var controller = new ContentController(appContext);

 // Act: try to get information on Chapter #1

 var result = controller.Chapters(1) as ViewResult;

 // Assert

 ViewDataDictionary viewData = result.ViewData;

 var chapter = viewData["Chapter"] as Chapter;

 Assert.AreEqual(1, chapter.ID);

 }

 [TestMethod]

 public void FailIfNegativeChapterIdIsPassed()

 {

 // Arrange

 var controller = new ContentController(appContext);

 // Act: try to get information on Chapter # -1

 var result = controller.Chapters(-1) as ViewResult;

 // Assert

 ViewDataDictionary viewData = result.ViewData;

 object data_chapter = viewData["Chapter"];

 Assert.IsNull(data_chapter);

 }

.
 .
 .

}

The method ShouldFindOneChapterByItsId gets an instance of the controller class under test
and calls its Chapters method. Next, armed with full knowledge of the method’s output,
it goes through a number of assertions. If all is fine, the test passes.

The constructor of the controller class gets an ApplicationContext object that delivers all
of the much needed dependencies. An ad hoc version of the ApplicationContext object is
 created in the initialization step of the fixture.

 Chapter 4 Inside Controllers 207

As you can see in the preceding code, references to repositories have been replaced with
fake objects that just return canned values and never fail or throw. Here’s a sample fake
repository:

public class FakeChapterRepository : IChapterRepository

{

 public IList<Chapter> GetAll()

 {

 List<Chapter> chapters = new List<Chapter>();

 for (int i = 1; i <= 12; i++)

 chapters.Add(CreateFakeChapter(i));

 return chapters;

 }

 public Chapter GetByID(int chapterID)

 {

 return CreateFakeChapter(chapterID);

 }

 private Chapter CreateFakeChapter(int chapterID)

 {

 var chapter = new Chapter();

 chapter.ID = chapterID;

 chapter.Title = String.Format("Chapter #{0}", chapterID);

 chapter.Abstract = String.Format("This is chapter #{0}", chapterID);

 return chapter;

 }

}

Figure 4-16 shows the results of these tests.

FIGuRE 4-16 The test run completed successfully.

Ultimately, with proper abstractions in place, the controller and the service layer classes can
work with both a real repository that performs data access and with a fake one that just
 returns canned values. Power to dependency injection!

208 Part II The Core of ASP.NET MVC

Note Recall that dependency injection is a simple pattern that provides guidance on how to
inject objects into a class. Raw dependency injection is just what we did here. There’s another,
more spectacular, way of implementing dependency injection—via IoC containers. In Chapter 11,
in the context of ASP.NET MVC customization, I’ll discuss controller factories and rework this
 example to use dependency injection via an IoC container.

In case you can’t make the connection right now and are momentarily left wondering why
you need to mix up controller factories with IoC containers, let me give you a bit of quick
relief. To keep the controller’s code free of any initialization burden, you want to resolve all
 dependencies when the controller is instantiated. For this to happen, you need to rewrite
the factory and let the factory deal with the setup of the IoC container first and resolve
 dependencies next.

From Fakes to Mocks
In testing, a fake object is a relatively simple clone of an object that offers the same interface
as the original object but returns hard-coded or computed values. The fake object has no
state and no significant behavior. From the fake object’s perspective, it makes no difference
how many times you invoke a fake method and when in the flow the call occurs.

A mock object is a more sophisticated version of a fake. A mock does all that a fake does,
plus something more. In a way, a mock is an object with its own personality that mimics the
behavior and interface of another object. What more does a mock provide to testers?

When you use fakes, you’re mostly interested in verifying that some expected output derives
from a given input. You are interested in the state that a fake object might represent; you are
not interested in interacting with it.

You use a mock instead of a fake only when you need to interact with dependent objects
during tests. For example, you might want to know whether the mock has been invoked or
not, and you might decide within the test what the mock object has to return for a given
method.

Writing mocks manually is hardly an option: the code is generally too complex and often
changes frequently. Alternatively, you might come up with a generic mock class that works in
the guise of any object you specify. This generic mock class also exposes a general-purpose
interface through which you set your expectations for the mocked object. This is exactly
what mocking frameworks do for you. In the end, you never write mock objects manually;
you generate them on the fly using some mocking framework, such as TypeMock, Moq,
RhinoMocks, or NMock2, to name a few of the more popular ones. (No mocking framework
is currently shipped with any version of Visual Studio.)

 Chapter 4 Inside Controllers 209

Summary
Controllers are the heart of an ASP.NET MVC application. They are linked to user-interface
actions and are in touch with the middle tier. Controllers mediate between the user requests
and the capabilities of the server system. Controllers, however, simply implement pieces of
functionality. They order the rendering of the page, but they don’t include the rendering of
any response for the user.

This is a key difference with ASP.NET Web Forms. In a controller, the processing of the
 request is neatly separated from the display. In Web Forms, instead, the page processing
phase incorporates both execution of some tasks and rendering of the response.

What does it mean to you as a developer?

You have to start with a clear design of the functions required for the system and map them
to a set of executors—the controller classes. Controllers, in turn, control a number of possible
views and switch among them following the needs of use-cases. The number of controllers
can grow significantly in large applications, and this is where areas fit in. An area is a clear
way to partition large applications into smaller and more manageable sets.

In the end, with ASP.NET MVC—and with controllers in particular—the importance of design
shows up. Maybe for the first time in the .NET space, the design of a Web application follows
the same canonical rules of software design. Design is design, regardless of whether or
not it’s for the Web. As a final piece of advice, I suggest you keep in mind the mantra that
I learned through my own trials and tribulations in the early days of object-oriented design:
we all know the good, sane principles, but then we all make the same mistakes over and over
again.

Finally, you might have noticed a lot of forward references in this chapter—specifically to
Chapter 5. This is mostly because the activity of a controller inevitably intersects with the
 activity of views and models. The next chapter is just about views.

 211

Chapter 5

Inside Views
Design is not just what it looks like and feels like. Design is how it works.

—Steve Jobs

The rave reviews that ASP.NET MVC has received from the development community since
its first appearance in October 2007 convinced many developers to give it at least a quick
try. When one approaches ASP.NET MVC without the strong commitment that derives from
an impending project or deadline, there’s one particular aspect of it that the newcomer often
has difficulty making sense of—the generation of the HTML for the browser.

In ASP.NET Web Forms, you don’t even think of an action—you think of pages. And you
tend to map to a page any functional needs your application might have. As a Web Forms
developer, you see the implementation of a functional need as the page that generates the
response you expect for it. Imagine you’re working on the use-case for a user who registers
with a given site. If the process completes successfully, you then want to display a thank-you
screen. How do you design this behavior?

In a Web Forms scenario, you typically arrange a form to collect the user’s data and then
submit this data through a postback. Next, you might have a server-to-server redirection
from register.aspx to thankyou.aspx or maybe a plain message displayed in the body of the
same register.aspx page.

In ASP.NET MVC, you instead think of the effects of the Register action and the subsequent
view to display. This is neither more nor less of what you do in a non-Web scenario.
In ASP.NET MVC, you might not even have a thankyou.aspx page—you simply need to have
a component within your application with the ability to generate the expected thank-you
screen. This component is the view.

In this chapter, I’ll attempt to dissect the internal structure of the view component—one
of the key actors in the Model-View-Controller (MVC) pattern (and all of its derivatives). I’ll
 explore the properties and behavior of the various classes that form the hierarchy and touch
on the architecture of the underlying view engine. Finally, I’ll focus on practical aspects of
writing a view in an ASP.NET MVC application.

To start off, though, I’ll briefly examine the points of contact between controllers and views,
such as which item triggers what, and how data is being exchanged.

212 Part II The Core of ASP.NET MVC

Views and Controllers
In ASP.NET MVC, a view is a class that gets a template and some data and then produces
a response for the browser. The controller selects the next view and asks it to render
out the response. The controller won’t get anything back from the view. The controller’s
 responsibilities end when it yields to the view. Subsequently, the view is in charge of writing
to the output stream any content for the browser.

From Controllers to Views
The view doesn’t have a real autonomous life in ASP.NET MVC. A view exists only to be
 invoked at the end of certain controller actions to produce a response. One of the biggest
changes in ASP.NET MVC is the role of the view—it’s simply a black box. You put something
in it, and something else comes out at the other end.

Views and Action Results
After the controller instance has completed its job, there might be some computed
data to display to the user. Most of the time, this data is fused to an HTML template and
 written to the output stream. However, controller actions don’t always require displaying
some HTML to the browser. In some situations, in fact, the user doesn’t receive any HTML;
instead, the user receives a JavaScript file or maybe a JSON string.

In Chapter 4, “Inside Controllers,” Table 4-6 details all possible action result types in
ASP.NET MVC. In the same chapter, you also learned that any controller action always ends
up returning an ActionResult object. The type ActionResult is not really a data container.
It is, instead, an abstract class that offers a unified programming interface to execute any
 operations that have the system produce a result for the browser.

The particular action result that returns HTML to the browser is known as a ViewResult object.
This chapter is mostly about these view results.

Passing Data to the View
In ASP.NET MVC, the controller packages data and actions according to its design, and the
view receives whatever the controller provides. It’s the interpretation of the data that is under
the view’s jurisdiction. Maybe it outputs a table, maybe it outputs a menu, maybe something
else. The view does not dictate how the data is provided, even though controllers and related
views aren’t written in a vacuum. However, the point is that one controller could provide the
same or similar data to several views.

The view might be written to accept content from the ViewData dictionary, or it might be
written to expect a strongly typed object.

 Chapter 5 Inside Views 213

You met the ViewData dictionary already in Chapter 4. It’s defined on the Controller as
a container for data to be consumed by the selected view. You can add as many entries to
the ViewData dictionary as you plan to consume from within the view class. The ViewData
dictionary is only the default option for the controller and view to exchange data.
(See Figure 5-1.)

Computed values
packed in the ViewData

dictionary

Computed values
stored in a view-specific

object

Computed
values

View class

Controller class

Template
HTML

FIGuRE 5-1 The controller passes data down to the view.

Building the Response for the Browser
The view component is the class the developer writes to complete the puzzle that results in
the runtime environment delivering an HTML response to the browser. If you look under the
hood of the view object, however, you find quite complex machinery centered on the view
engine object.

The View Engine
The view engine is the component that physically builds the output for the browser. It gets
an engine-specific template file and mixes its content with any context information it receives
from the controller.

As mentioned, the final output generated by a view engine is expected to be mostly HTML,
but it can be anything the Web engine decides it should be. However, if you expect to
 return a special content type, you’re probably better off using an ad hoc action result type.
ASP.NET MVC defines action results for JSON strings, files, and JavaScript code.
(See Chapter 4.) The mechanism is so easy to extend that you can create a custom
 action result type in a few lines of code. I’ll cover this in detail in Chapter 11, “Customizing
ASP.NET MVC”

214 Part II The Core of ASP.NET MVC

The view engine is a pluggable element of the ASP.NET MVC architecture. The framework
comes with a built-in engine that leverages the display infrastructure of ASP.NET Web
Forms. A view engine is merely a class that implements the IViewEngine interface, which is
shown here:

public interface IViewEngine

{

 // Methods

 void RenderView(ViewContext viewContext);

}

You can definitely consider replacing this default view engine with one of your own.
Although this is definitely an interesting possibility, it’s a step you might not want to
 undertake with a light heart. A few alternative engines have been made available by the
 development community, and you can find them listed here: http://mvccontrib.codeplex.com/
documentation.

We’ll have a look at a simple override of the default view engine later in the chapter.

Note If you’re somehow unsatisfied with the default view engine (based on the Web Forms
 rendering model), the first alternate view engine you might want to look at is the Spark view
 engine you can get at http://sparkviewengine.com. Spark works with ASP.NET MVC as well as
Castle MonoRail. What differentiates it from the default engine is the dominance of the HTML
markup in the template. There’s nothing like server controls or HTML helpers in the resulting
template; everything is HTML, and pieces of additional logic (loops, data binding) fit nicely in
the HTML through ad hoc attributes. The Spark view engine is gaining popularity, but it is not
 necessarily better than all the others. What’s better depends on your attitude, preference, needs
and, why not, gut feeling.

A Template for the View
Any nontrivial view engine must be based on a template file that describes the output you
expect. Typically, a template also includes some placeholders for data computed by the
 invoking controller. The template file, however, can be made of any text that the selected
view engine is able to understand and process.

ASP.NET MVC operates with a default view engine that leverages Web Forms for the actual
rendering of HTML. For this reason, you are allowed to write a view using an ASPX-based
template. This trick preserves for you the ability to use server controls, user controls,
and master pages even in an ASP.NET MVC view.

As you’ll see later in the chapter, although you’re allowed to use server controls in the
 building of ASP.NET MVC views, you should be aware that not all the features of a
 typical server control (especially rich server controls) can be successfully leveraged in

 Chapter 5 Inside Views 215

ASP.NET MVC. The best you can do is accept that using server controls can be a nice and
possibly effective shortcut, but it’s hardly the preferred way to go. I suggest that you still
consider server controls to be part of your tool set, but resort to them only when you have
a strong reason to do so. HTML helpers are a lightweight counterpart of server controls
 supported by the default view engine. They kind of preserve the Web Forms programming
style without forcing view-state, postbacks, as well as the classic page life cycle.

On the other hand, my experience reveals that when you have a team with strong Web
Forms skills you might still want to consider the default engine first. For sure, using server
controls in ASP.NET MVC requires a delicate balancing of features and practices, but probably
learning slightly different ways of using server controls combined with HTML helpers is
quicker than training a bunch of people on using a completely different template language.

Important Even though you still end up defining the expected user interface through the
 familiar ASPX markup, the role of the ASPX files you write is radically different in Web Forms
and ASP.NET MVC. In Web Forms, the user points the browser to the ASPX file that is considered
to be the resource to access. Access to the resource causes the system to perform some tasks
and generate some response. In ASP.NET MVC, the user points the browser to an action to
 execute, and the ASPX file is merely the template used internally to generate the HTML layout to
contain the response the action has computed. For this reason, you need to plan your ASP.NET
MVC application around required functions instead of required pages.

Anatomy of an ASP.NET MVC View
The process that has ASP.NET MVC render the view is fairly sophisticated, although it’s
 hidden to developers for the most part. Developers are primarily responsible for preparing
a bunch of view templates and for selecting the right view from the controller. That said,
the whole view process can be observed and controlled step by step; however, this is not
a primary need for developers in most scenarios.

Selecting the View
After the invoked controller’s method has accomplished the given task, it selects the next
view and triggers the process that ultimately results in building the response for the browser.

The logic the controller employs to select the next view can be as complex as necessary.
In simple cases, it consists of the plain invocation of a particular view. In other situations,
the logic can be more sophisticated, ranging from a few if branches to a true workflow.
A controller method usually calls into the View method to generate a view result for the
 action invoker. Let’s find out more about the View method and the action invoker.

216 Part II The Core of ASP.NET MVC

The Controller’s View Method
The View method on a controller class assembles and returns an instance of the
ViewResult class. The ViewResult class is packed with any computed data that the view needs
to know about. The View method has a number of overloads, but all of them refer to the
 following two:

virtual ViewResult View(IView view, object model);

virtual ViewResult View(string viewName, string masterName, object model);

The source code of these two methods is nearly identical and essentially aimed at creating
a ViewResult object to return:

protected virtual ViewResult View(IView view, object model)

{

 // You provided a strongly typed object for the data in the view.

 // Let's store it properly.

 if (model != null)

 {

 base.ViewData.Model = model;

 }

 // Arrange a view result object

 ViewResult result = new ViewResult();

 // Put some data into it.

 result.View = view;

 // Pass ViewData and TempData dictionaries down to the view

 result.ViewData = this.ViewData;

 result.TempData = this.TempData;

 // Return

 return result;

}

Instead of receiving a ready-to-use IView object, the method can get the name of the view to
create, and optionally its master view. The structure of the method doesn’t really change that
much, as you can see here:

protected virtual ViewResult View(string viewName, string masterName, object model)

{

.
 .
 .

 // Put some data into it.

 result.ViewName = viewName;

 result.MasterName = masterName;

.
 .
 .

}

 Chapter 5 Inside Views 217

Instead of the IView object, the view name and master name are stored into the newly
 created instance of ViewResult. In the end, the ViewResult object contains an IView object or
any data required by the view engine to create an IView object. The IView object will actually
generate the response for the browser. The action invoker is then responsible for processing
the ViewResult object.

The Action Invoker
As you saw in Chapter 4, the execution of any controller method is monitored by a special
component known as the action invoker. The following listing serves as a reminder of the
code that governs the execution of an action method:

// This virtual method on the Controller class controls the

// execution of the selected action method

protected override void ExecuteCore()

{

.
 .
 .

 try

 {

 string requiredString = this.RouteData.GetRequiredString("action");

 if (!this.ActionInvoker.InvokeAction(

 base.ControllerContext, requiredString))

 {

 this.HandleUnknownAction(requiredString);

 }

 }

 finally

 {

.
 .
 .

 }

}

The action invoker is a customizable component of the controller’s scaffolding. From
a developer’s perspective, it’s simply a class that implements the IActionInvoker interface.
The action invoker is exposed through the public property ActionInvoker. The default action
invoker is an instance of the class ControllerActionInvoker. The following listing shows the
implementation of the ActionInvoker property in the Controller base class:

private IActionInvoker _actionInvoker;

public IActionInvoker ActionInvoker

{

 get

 {

 if (this._actionInvoker == null)

 this._actionInvoker = new ControllerActionInvoker();

 return this._actionInvoker;

 }

218 Part II The Core of ASP.NET MVC

 set

 {

 this._actionInvoker = value;

 }

}

The IActionInvoker interface defines the policy according to which a controller can invoke
an action in response to an HTTP request:

public interface IActionInvoker

{

 bool InvokeAction(ControllerContext controllerContext, string actionName);

}

The action invoker does two key things. First, it executes the controller’s method and saves
the action result. Next, it processes the action result. Here’s the relevant section of code:

protected virtual void InvokeActionResult(

 ControllerContext controllerContext, ActionResult actionResult)

{

 actionResult.ExecuteResult(controllerContext);

}

As you can see, processing the action result ends up in a call being made to the ExecuteResult
method of the action result object. For an HTML view, executing the result just renders the
markup to the response stream. This operation is orchestrated by the ExecuteResult method
on the ViewResult class.

The ViewResult Class
The ViewResult class basically supplies the model to the view object and then renders it to the
response. The class inherits from ViewResultBase, whose properties are listed in Table 5-1.

TABLE 5-1 Properties of the ViewResultBase class

Member Description

TempData Initially set with the content of the TempData dictionary as defined on
the controller class.

View Contains the IView object to be rendered to the response.

ViewData Initially set with the content of the ViewData dictionary as defined on
the controller class.

ViewEngineCollection Refers to the collection of view engines available to the application.

ViewName Contains the name of the view to be rendered. If the value of this
p roperty is null, the name will be resolved when processing the view
result.

The ViewResultBase class also features a couple of methods. In particular, the class overrides
the ExecuteResult method and defines an additional abstract method—the FindView method.

 Chapter 5 Inside Views 219

The ExecuteResult method contains the entire logic employed to orchestrate the rendering
of the view:

public override void ExecuteResult(ControllerContext context)

{

 // Make sure we have a context to work with

 if (context == null)

 throw new ArgumentNullException("context");

 // Resolve the view name (if left unspecified by the developer)

 if (string.IsNullOrEmpty(this.ViewName))

 this.ViewName = context.RouteData.GetRequiredString("action");

 // Ask the view engine to return an IView object (if not specified)

 ViewEngineResult result = null;

 if (this.View == null)

 {

 // Method FindView must be overridden by derived classes such as ViewResult

 result = this.FindView(context);

 this.View = result.View;

 // Note that the FindView method on derived classes would throw an

 // exception if the view could not be created.

 }

 // Prepare a view context container object, and render the view

 ViewContext viewContext = new ViewContext(

 context, this.View, this.ViewData, this.TempData);

 this.View.Render(viewContext, context.HttpContext.Response.Output);

 // Release the IView object

 if (result != null)

 result.ViewEngine.ReleaseView(context, this.View);

}

First, assuming there is a context to work with, the ExecuteResult method resolves
the view name. If the developer left it unspecified (for example, the developer invokes the
 parameterless overload of the View method on the controller class), the view name defaults
to the name of the current action method.

If no valid IView object has been passed, the method leverages the FindView method to
 locate the current view engine and have it return a valid IView object. Note that FindView
is abstract on ViewResultBase and must be overridden in ViewResult and other derived
classes.

The ViewResult class extends ViewResultBase by simply adding a MasterName property to
indicate the name of the master view (if any) and overriding FindView.

Finally, the ExecuteResult method prepares the view context container and passes that to the
Render method on the IView object for writing markup to the output stream.

220 Part II The Core of ASP.NET MVC

Note The FindView method leverages the capabilities of the view engine to retrieve and
 instantiate the view object. If the view engine is unable to create and return a valid view object,
the FindView method on the ViewResult class bundles up information and throws an exception.
The view engine will not throw any exception itself, but it provides information about the
searched locations. Note that getting a view object is only a preliminary step and no rendering
has happened as yet at this point.

The ViewContext Class
The ViewContext class extends ControllerContext by adding some view-related properties.
Specifically, it adds TempData, ViewData, and View. All in all, the ViewContext class has no
other purpose than grouping any information that is functional to rendering the view.

Creating the View
As mentioned earlier, you need an IView object in order to render the response to the
 browser. The IView object can be created, or obtained, by the controller and passed along
using the overload of method View that accepts an IView. More often, though, the IView
 object is created internally through the services of the view engine.

The View Engine
The view engine is a replaceable component that receives all the information packed in the
ViewResult container. The view engine is expected to create and return an object that knows
how to render the response to the output stream.

ASP.NET MVC defines the interface for the view engine plus a small hierarchy of concrete
view engine classes. The interface is IViewEngine, and it’s defined as follows:

public interface IViewEngine

{

 ViewEngineResult FindPartialView(

 ControllerContext controllerContext,

 string partialViewName,

 bool useCache);

 ViewEngineResult FindView(

 ControllerContext controllerContext,

 string viewName,

 string masterName,

 bool useCache);

 void ReleaseView(

 ControllerContext controllerContext,

 IView view);

}

 Chapter 5 Inside Views 221

The role of each method is relatively straightforward and is detailed in Table 5-2.

TABLE 5-2 Methods of the IViewEngine interface

Method Description

FindPartialView Creates and returns an IView object based on the specified controller
 information plus the name of a partial view

FindView Creates and returns an IView object based on the specified controller
 information plus the name of a view and its master

ReleaseView Releases the specified IView object

Both FindPartialView and FindView return a ViewEngineResult object, which represents the
results of locating a view engine. The type is a plain container and, despite the “Result” suffix
in the name, doesn’t inherit from ActionResult.

public class ViewEngineResult

{

 public ViewEngineResult(IEnumerable<String> searchedLocations);

 public ViewEngineResult(IView view, IViewEngine viewEngine);

 public IEnumerable<String> SearchedLocations { get; private set; }

 public IView View { get; private set; }

 public IViewEngine ViewEngine { get; private set; }

}

The ViewEngineResult type just aggregates the IView object, the view engine object
used to create it, and the list of locations searched to create the view. The content of the
SearchedLocations property depends on the structure and behavior of the selected view
 engine. The ReleaseView method is intended to dispose of any reference that the IView
 object has in use. Obviously, the implementation of the ReleaseView method also can
vary—even significantly—depending on the view engine.

ASP.NET MVC includes one default view engine that I’ll examine in a moment.

The View Object
The IView interface is an abstraction for a dedicated object that builds on the view context
and writes a response to a text writer. The interface is shown here:

public interface IView

{

 void Render(ViewContext viewContext, TextWriter writer);

}

As you saw earlier, the text writer is provided by the ViewResult object—the final consumer
of the IView object. Any view object has a relatively simple structure—a generic renderer
of markup—but its internal structure and logic are tightly coupled to the mechanics of the
view engine.

222 Part II The Core of ASP.NET MVC

Partial Views
In ASP.NET MVC, you can distinguish between views and partial views. There’s no great
 difference between a view and a partial view. Quite simply, a partial view is a small
and reusable piece of a view. The difference between views and partial views in ASP.NET
MVC is nearly the same as between Web Forms and user controls.

Both types of a view get the same input and produce the same output; both are represented
by the IView interface. A partial view, however, has no concept of a master view and is
 therefore simply a fraction of the total rendering necessary for the request. The total view
can result from multiple partial independent views.

A partial view can be driven by a different view engine than the parent view. As the IViewEngine
interface shows, a view engine is expected to support both partial views and global views.

The Default View Engine
ASP.NET MVC comes with a default view engine that is extensively based on a subset of the
Web Forms machinery. Note that ASP.NET MVC leverages the existing Web Forms scaffolding
only for rendering and largely ignores the postback capabilities of it.

The VirtualPathProvider View Engine
In ASP.NET Web Forms, the generation of the response is based on the processing of a
 template file expressed using the ASPX markup. The Web Forms machinery is responsible for
locating the ASPX source file and compiling it dynamically into an HTTP handler class. Next,
the dynamically created class is processed, goes through the ASP.NET page life cycle, and
writes any response out at the end of it all.

To locate the ASPX source file, Web Forms relies on the services of a special component—the
VirtualPathProvider class, defined in the System.Web.Hosting namespace within the system.
web assembly. The VirtualPathProvider class implements a virtual file system for a Web
 application and returns content in response to a file name request. More details about the
role of a virtual path provider in ASP.NET can be found in the sidebar “What’s a Virtual Path
Provider, Anyway?”.

ASP.NET MVC builds its default view engine around the services of the VirtualPathProvider
class. Basically, the default view engine leverages the path provider to locate the ASPX
 templates and process them into markup. In doing so, most of the processing logic
of Web Forms is reused.

ASP.NET MVC defines a small hierarchy of view engine classes. The abstract class
VirtualPathProviderViewEngine provides the set of core services. The derived class
WebFormsViewEngine, on the other hand, fills in any behavior that the parent class left
unspecified.

 Chapter 5 Inside Views 223

What’s a Virtual Path Provider, Anyway?
Introduced with ASP.NET 2.0 to serve the needs of the Microsoft Office SharePoint
Server development team, the virtual path provider mechanism in ASP.NET is a way
to virtualize a bunch of files and even a structure of directories. Up to the latest
 version (4.0), ASP.NET doesn’t read the content of any requested resources directly from
disk; instead, ASP.NET gets it through the services of the built-in VirtualPathProvider
class. This class assumes a one-to-one correspondence between .aspx resources and
disk files and serves ASP.NET with just the expected content. So nothing really works
 differently for the end developer even though significant architectural refactoring work
was performed.

By deriving your own class from the system-provided VirtualPathProvider class, you can
implement a virtual file system for your Web application. In such a virtual file system,
you essentially abstract Web content away from the physical structure of the file
 system. As an example, you might serve incoming page requests based on the source
code you have stored in a Microsoft SQL Server database. A virtual path provider takes
a file name, directory name, or both and returns the content for it (or them). Where the
content really comes from is a detail hidden in the implementation of the provider.

Most of the files involved with the processing of an ASP.NET request can be stored
in a virtual file system. The list includes ASP.NET pages, themes, master pages, user
controls, custom resources mapped to a build provider, and static Web resources
such as HTML pages and images. A virtual path provider, however, can’t serve global
resources (such as global.asax and web.config) and the contents of reserved folders
(such as Bin, App_Data, App_GlobalResources, App_Browsers, App_Code) and any
App_LocalResources.

Core Services of a Path-Based View Engine
The VirtualPathProviderViewEngine class is essentially an implementation of the IViewEngine
interface. Most of what it does relates to the methods in the interface—resolving views,
 resolving partial views, and releasing views.

The implementation of an interface’s FindPartialView and FindView methods is nearly
 identical and differs only in terms of an extra name that has to be resolved for views—the
location of the file where the content of the master view is stored. So without getting too
specific, let’s examine the implementation of the sole FindView method.

The method attempts to resolve the view name and the master view name in terms
of some physical .aspx and .master files on the server. If the search is successful, the
 method attempts to create an IView object and packs that into a ViewEngineResult object.

224 Part II The Core of ASP.NET MVC

The VirtualPathProviderViewEngine class doesn’t personally take care of the creation of the
IView object; instead, it delegates that task to derived classes. The method CreateView used
in the following listing is, in fact, marked as abstract on the VirtualPathProviderViewEngine
class:

public virtual ViewEngineResult FindView(

 ControllerContext context, string viewName, string masterName, bool useCache)

{

 string[] searchedViewLocations;

 string[] searchedMasterLocations;

.
 .
 .

 // Get the controller name for the current action

 String requiredString = context.RouteData.GetRequiredString("controller");

 // Get the physical path for the ASPX template to use for the specified view

 String viewTemplatePath = this.GetPath(context,

 this.ViewLocationFormats,

 "ViewLocationFormats",

 viewName,

 requiredString,

 "View",

 useCache,

 out searchedViewLocations);

 // Get the physical path for the MASTER template to use for the specified master

 String masterTemplatePath = this.GetPath(context,

 this.MasterLocationFormats,

 "MasterLocationFormats",

 masterName,

 requiredString,

 "Master",

 useCache,

 out searchedMasterLocations);

 // Check physical paths

 if (!String.IsNullOrEmpty(viewTemplatePath) &&

 (!String.IsNullOrEmpty(masterTemplatePath) || String.IsNullOrEmpty(masterName)))

 {

 // Create the view object, and pack it into a ViewEngineResult container

 return new ViewEngineResult(

 this.CreateView(context, viewTemplatePath, masterTemplatePath), this);

 }

 // If here, then view or master couldn't be resolved. The ViewEngineResult

 // being returned then contains only the list of locations unsuccessfully

 // searched. This information is used to arrange the exception message.

 return new ViewEngineResult(

 searchedViewLocations.Union<String>(searchedMasterLocations));

}

GetPath is a private member of the VirtualPathProviderViewEngine class, which contains the
logic for resolving names to files. Ultimately, the method loops through a predefined list of
location names and attempts to see whether a match can be found according to naming

 Chapter 5 Inside Views 225

convention rules currently set. For example, this method is responsible for implementing the
rule that says the view Bar invoked by controller XXX must be a bar.aspx file located under
the Views\XXX folder. The list of locations to search for views, partial views, and master views
is stored in ad hoc public properties on the VirtualPathProviderViewEngine class.

These properties—named ViewLocationFormats, PartialViewLocationFormats,
and MasterLocationFormats, respectively—are string arrays left unassigned in the
VirtualPathProviderViewEngine class. They are set, instead, by the actual view engine class
doing the real job of creating IView objects.

The GetPath method also uses a cache to speed up the search. Any view name that is
 successfully resolved is stored in a location view cache. The cache is then checked first on any
subsequent access. The view cache is abstracted by the IViewLocationCache interface and is
exposed as a public read/write property named ViewLocationCache. The class that provides
view location cache services by default is DefaultViewLocationCache. It stores any resolved
view names in the ASP.NET Cache object.

Note Just like any other class in ASP.NET MVC, the DefaultViewLocationCache class doesn’t
use any ASP.NET intrinsic objects directly. Instead, it uses the HttpContextBase class as
an intermediary, which gains you isolation from the ASP.NET runtime during testing.

When the View Name Can’t Be Resolved
It’s interesting to notice that the view engine doesn’t throw any exception when the view
name can’t be resolved. As you might have noticed, the GetPath method provides an output
argument at the bottom of the signature. This argument is expected to be an array of strings
containing the searched locations.

private string GetPath(

 ControllerContext controllerContext,

 string[] locations,

 string locationsPropertyName,

 string name,

 string controllerName,

 string cacheKeyPrefix,

 bool useCache,

 string[] searchedLocations)

The argument is filled with any locations on the Web server where the GetPath method
 attempts to find a match between existing files and any provided view name.

If the view engine detects that it doesn’t hold enough information to create the view,
it performs a set union operation between the paths that were searched for view and
 master view and packs that information into the returned ViewEngineResult container.
That information is then displayed in the subsequent exception, as illustrated in Figure 5-2.

226 Part II The Core of ASP.NET MVC

FIGuRE 5-2 Message and stack trace of the exception shown when a view can’t be created.

The Web Forms View Engine
As mentioned, the VirtualPathProviderViewEngine class provides only the core services of
a file-based view engine. The details are filled in by the WebFormsViewEngine class, which is
the class that provides the IView objects for any ASP.NET MVC application that doesn’t use its
own view engine.

The WebFormsViewEngine Class
The WebFormsViewEngine class derives from VirtualPathProviderViewEngine and extends
it by overriding CreatePartialView, CreateView, and FileExists. The signature of the class is
shown here:

public class WebFormViewEngine : VirtualPathProviderViewEngine

{

 // Fields

 private IBuildManager _buildManager;

 // Methods

 public WebFormViewEngine();

 protected override IView CreatePartialView(

 ControllerContext context, string partialPath);

 protected override IView CreateView(

 ControllerContext context, string viewPath, string masterPath);

 protected override bool FileExists(

 ControllerContext context, string virtualPath);

 // Properties

 internal IBuildManager BuildManager { get; set; }

}

 Chapter 5 Inside Views 227

Setting Location Formats
The constructor of WebFormsViewEngine sets the paths to be searched when resolving views,
partial views, and master views:

public WebFormViewEngine()

{

 // Set the locations to search to resolve master views

 base.MasterLocationFormats = new string[] {

 "~/Views/{1}/{0}.master",

 "~/Views/Shared/{0}.master" };

 // Set the locations to search to resolve master views if areas are used

 base.AreaMasterLocationFormats = new string[] {

 "~/Areas/{2}/Views/{1}/{0}.master",

 "~/Areas/{2}/Views/Shared/{0}.master" };

 // Set the locations to search to resolve views

 base.ViewLocationFormats = new string[] {

 "~/Views/{1}/{0}.aspx",

 "~/Views/{1}/{0}.ascx",

 "~/Views/Shared/{0}.aspx",

 "~/Views/Shared/{0}.ascx" };

 // Set the locations to search to resolve views if areas are used

 base.AreaViewLocationFormats = new string[] {

 "~/Areas/{2}/Views/{1}/{0}.aspx",

 "~/Areas/{2}/Views/{1}/{0}.ascx",

 "~/Areas/{2}/Views/Shared/{0}.aspx",

 "~/Areas/{2}/Views/Shared/{0}.ascx" };

 // Same locations for views and partial views

 base.PartialViewLocationFormats = base.ViewLocationFormats;

 // Same locations for views and partial views if areas are used

 base.AreaPartialViewLocationFormats = base.AreaViewLocationFormats;

}

From here, it should be clear that if you have reasons for using a different directory schema
for some of your views, all you need to do is derive a simple class as shown here:

public class MyWebFormsViewEngine : WebFormViewEngine

{

 public MyWebFormsViewEngine()

 {

 // Ignoring areas in this example

 this.MasterLocationFormats = base.MasterLocationFormats;

 this.ViewLocationFormats = new string[]

 {

 "~/Views/{1}/{0}.aspx"

 };

 // Customize the location for partial views

 this.PartialViewLocationFormats = new string[]

 {

 "~/PartialViews/{1}/{0}.aspx",

 "~/PartialViews/{1}/{0}.ascx"

 };

 }

}

228 Part II The Core of ASP.NET MVC

To use this class in lieu of the default view engine, you enter the following code in
global.asax:

protected void Application_Start()

{

 RegisterRoutes(RouteTable.Routes);

 // Removes the default engine and adds the new one

 ViewEngines.Engines.Clear();

 ViewEngines.Engines.Add(new MyWebFormsViewEngine());

}

From now on, your application will fail if any of the partial views is located outside
a PartialViews subfolder. (See Figure 5-3.)

FIGuRE 5-3 For the custom view engine to find a partial view, an ad hoc folder is required.

There’s more to say about registration of custom view engines, so I’ll return to this topic in
Chapter 11.

The WebFormView Class
The main purpose of the WebFormsViewEngine class is to create IView objects for views
and partial views. The parent class of WebFormsViewEngine does most of the orchestration
but leaves the derived class with the burden of physically creating the object. As you can see

 Chapter 5 Inside Views 229

from the implementation of the CreateView and CreatePartialView methods, the default view
object is an instance of the WebFormView class:

protected override IView CreatePartialView(

 ControllerContext context, string partialPath)

{

 return new WebFormView(partialPath, null);

}

protected override IView CreateView(

 ControllerContext context, string viewPath, string masterPath)

{

 return new WebFormView(viewPath, masterPath);

}

WebFormView is a class that contains the information needed to build a Web Forms page
in ASP.NET MVC and the behavior to render it. The class constructor doesn’t really do much
other than store the view and master paths internally.

The WebFormView class implements the IView interface, so it’s no surprise that most of the
job the class performs is concentrated in the IView.Render method.

The method Render relies extensively on the ASP.NET Web Forms infrastructure to produce
a response for the browser. First, the method resorts to the ASP.NET BuildManager object to
ensure that the ASPX (or ASCX) source files are properly compiled to the canonical dynamic
page class. Next, it gets from the build manager a reference to the page object to render.
The behavior is summarized in the following code snippet:

public virtual void Render(ViewContext viewContext, TextWriter writer)

{

.
 .
 .

 // Gets the ASP.NET dynamic page object

 object obj = this.BuildManager.CreateInstanceFromVirtualPath(

 this.ViewPath, typeof(object));

.
 .
 .

 // In ASP.NET MVC, the dynamic page object derives from ViewPage, not Page

 ViewPage page = obj as ViewPage;

 if (page != null)

 {

 this.RenderViewPage(viewContext, page);

 }

 else

 {

 // If not a ViewPage, it might be a ViewUserControl

 ViewUserControl control = obj as ViewUserControl;

 if (control != null)

 this.RenderViewUserControl(viewContext, control);

 }

}

230 Part II The Core of ASP.NET MVC

In ASP.NET MVC, when the Web Forms–based view engine is used, it’s assumed that the
code-behind class inherits from ViewPage for plain views and ViewUserControl for partial
views. You can use any custom class on top of those in your actual code. However, at the
very minimum, page and user control classes need to have the extended set of members
that characterize ViewPage and ViewUserControl rather than Page and UserControl, which are
available in plain Web Forms.

The ViewPage and ViewUserControl Classes
These classes extend ASP.NET’s canonical Page and UserControl classes by adding a variety
of properties that collect the view context for the request. Table 5-3 lists extra properties for
ViewPage.

TABLE 5-3 Properties of the ViewPage class

Property Description

Ajax Helper object of type AjaxHelper that groups a number of methods
 useful for rendering HTML in AJAX scenarios.

Html Helper object of type HtmlHelper that groups a number of methods
 useful for HTML rendering.

MasterLocation Gets and sets the master location.

Model Convenience property used to access the Model property on ViewData.

TempData Convenience property used to access the TempData property on
ViewContext.

Url Helper object of type UrlHelper that groups a number of methods
 useful for working with ASP.NET MVC routes.

ViewContext Gets and sets the view context for the request.

ViewData Gets or sets a dictionary that contains data to pass between the
 controller and the view.

Writer Gets and sets the HTML writer object used to render any response.

As you saw earlier, the ViewContext class is a container for a bunch of view-related
 properties, including Model, TempData, and ViewData. In ViewPage, you find both
a ViewContext property and individual properties for some of its exposed members. As far
as Model and TempData are concerned, the redundant properties exist simply for your own
convenience:

// References the object in the Model property of the ViewData object

public object Model

{

 get { return this.ViewData.Model; }

}

// References the object in the TempData property of the ViewContext object

public TempDataDictionary TempData

{

 get { return this.ViewContext.TempData; }

}

 Chapter 5 Inside Views 231

public ViewDataDictionary ViewData

{

 get

 {

 if (this._viewData == null)

 this.SetViewData(new ViewDataDictionary());

 return this._viewData;

 }

 set { this.SetViewData(value); }

}

The implementation of ViewData, on the other hand, is that of a plain get/set property in
both ViewPage and ViewUserControl. Weird, isn’t it? So, are ViewData and ViewContext.
ViewState really two distinct containers? Yes, of course—they just point to the same object
reference. The trick is that WebFormView sets the ViewData property of ViewPage to the
object referenced by the ViewContext object. Right after that, WebFormView orders the
ViewPage instance to render.

In the end, it seems to be simply a matter of convoluted design or, more likely, a point that
was missed during the refactoring process. The documentation for the public ViewData
property on the ViewPage class is not very clear on this point.

You will find that most of these ViewPage properties listed in Table 5-3 are also supported
by the twin class ViewUserControl, with a couple of notable exceptions. The MasterLocation
property is not supported for user controls. In addition, the ViewUserControl class supports
an extra string property named ViewDataKey.

The use of the ViewDataKey property relates to filtering the content being sent to the partial
view. Let’s find out more.

Filtering ViewData Content in Partial Views
A typical view for a realistic ASP.NET MVC application is made of a main view and a variety
of partial views, possibly nested. Each (partial) view is expected to rely entirely on the content
of the provided ViewData dictionary to get any information it needs to render. How does
the content of ViewData (originally set by the controller) flow into the multiple partial views?

The content of ViewData flows unchanged from the main view down to any of its
 partial views, and from there to any nested views. Note, though, that even when views
and partial views share the same ViewData content, it’s never the same object reference.
Each partial view, in fact, receives from the parent its own copy of the ViewData container.
The parent, of course, can pass down the exact copy of its own ViewData object or
a modified version.

As you’ll see later in the chapter, the parent view creates a new ViewData dictionary explicitly
when it intends to pass a different set of data items to the partial view. When the parent
doesn’t care about adjusting the ViewData content for a partial view, making a copy of the
ViewData dictionary is the precise responsibility of the HTML helper used to render the
 partial view. (I’ll say more about this in a moment.)

232 Part II The Core of ASP.NET MVC

Because a partial view (including a nested partial view) always receives a copy of the
ViewData dictionary, it just can’t rely on the dictionary to pass data back to its parent.
In general, the philosophy of ASP.NET MVC entails that views are completely isolated from
one another and never attempt to communicate.

Accepting Only a Section of the ViewData Content
So the main view can filter the content of the ViewData dictionary being passed on to the
partial view. At the same time, the partial view can also be configured to accept only a
 segment of the parent’s ViewData dictionary.

By setting the ViewDataKey property on a partial view, you instruct the partial view to load
only the content of the parent’s ViewData dictionary that is stored in the specified item, if
any. Note that the value stored in ViewDataKey is taken into account only if the partial view
receives a null ViewData dictionary. In this case, if the parent dictionary contains a matching
entry, the value is extracted and processed, as in the following pseudo-code:

// Get the ViewData for this ViewUserControl

ViewDataDictionary myViewData = ...;

.
 .
 .

if (!String.IsNullOrEmpty(ViewDataKey))

{

 // Extract the object in the ViewDataKey entry of ViewData

 object target = myViewData.Eval(this.ViewDataKey) as ViewDataDictionary;

 // Take it, if it is another dictionary

 if (target != null)

 myViewData = target as ViewDataDictionary;

 else

 // If it is not another dictionary, store it in Model

 myViewData = new ViewDataDictionary(myViewData) { Model = target };

}

If the dictionary value pointed to by ViewDataKey is another ViewDataDictionary object, it’s
taken and passed on to the partial view. Otherwise, a new dictionary is created where the
Model property contains just the object pointed to by the ViewDataKey entry in the parent
dictionary.

Keep in mind that the effect produced by the ViewDataKey property depends on the way
in which you reference the partial view. If you do that through the RenderPartial HTML
helper, the partial view is guaranteed to receive a non-null dictionary, which means that
ViewDataKey is disregarded.

<% Html.RenderPartial("yourpartialview"); %>

What else can you do, then, to reference a partial view? You can use the old-fashioned, but
still effective, server-side approach:

<x:YourPartialView runat="server" ViewDataKey="SampleKey" />

 Chapter 5 Inside Views 233

If you do so, no view data dictionary gets silently passed to the partial view; subsequently,
the value of ViewDataKey is processed and a fraction of the main dictionary is passed to the
partial view.

Rendering the View
To top off our discussion about the mechanics of view rendering, one more argument is left
to cover. So let’s briefly examine what happens after the ViewPage (or the ViewUserControl)
object has received control and has been ordered to render the view.

As the following pseudo-code shows, the WebFormView class first configures the page object
(or user control) and then orders it to render:

void RenderViewPage(ViewContext context, ViewPage page)

{

 if (!string.IsNullOrEmpty(this.MasterPath))

 page.MasterLocation = this.MasterPath;

 page.ViewData = context.ViewData;

 page.RenderView(context);

}

It's particularly interesting to look at the internal implementation of the RenderView

method on ViewPage.

The method checks what’s behind the response stream object—the Response.Output
 property. There are two possibilities: it is the real output stream, or it is a text writer object
provided by code in an attempt to capture the output being written by the view. If no
 custom text writer has been provided, the request is served through ProcessRequest as if
it were a regular Web Forms call. If a custom text writer has been provided, the request is
 executed via Server.Execute, which offers a chance to pass in a writer where the output could
be accumulated.

In the end, the rendering of an ASP.NET MVC view is triggered with either a call to Server.
Execute or ProcessRequest method. It’s the same method defined on the System.Web.UI.Page
class that implements the ASP.NET Web Forms request life cycle.

This fact has a number of implications—for example, it means you can use server controls
inside of an ASP.NET MVC view or partial view. In addition, it means that the classic
 life-cycle events you might have learned from Web Forms (Init, Load, PreRender, as well as
 control-specific events such as the GridView’s RowDataBound event) are still there and fully
supported.

Writing a View
Writing an ASP.NET MVC view entails writing a source file that represents a template for the
response you want to serve to the end user. The template can be written in any syntax that
any of the currently registered view engines can understand. The ViewResult class resolves

234 Part II The Core of ASP.NET MVC

the view name by looping through the list of registered view engines and looking for the first
engine that can resolve the view into an IView object.

To successfully resolve a view, the view engine must be able to find the template associated
with the view name and that understand its content. Each view engine can use a different set
of rules as far as the view name-to-template association is concerned, and each view engine
might be able to recognize a different syntax in the template.

The default view engine—the WebFormsViewEngine class—uses the familiar ASPX markup
syntax of ASP.NET Web Forms. This means that a number of Web Forms markup features
can be reused, including server controls, master pages, themes, data binding expressions,
and $-prefixed dynamic expressions.

Free HTML for Everybody
I already briefly touched on this topic in Chapter 1, “Goals of ASP.NET MVP and
Motivations for Its Development,” but it would be useful to restate some points here
now that you’ve become more familiar with ASP.NET MVC and can look at Web Forms
from a broader perspective.

When working with Web Forms, you use server controls for almost anything you need
to have in the user interface. This approach certainly increases your productivity and
also gives you a great design-time experience—you see what a page looks like as you
author it. Server controls, however, come with a cost. They’re essentially black boxes
that get some input through properties and return some HTML. The returned HTML is
influenced by the configuration you provide through properties, but very few server
controls let you declaratively alter the structure of their output. For example, a server
control designed to output a plain HTML table can typically not be configured to build
and output a list, or even an XHTML-compliant table.

As a matter of fact, server controls limit the expressiveness of the HTML you can obtain.
Is this a problem? This limitation is becoming a bigger problem every day because of
the following functional and nonfunctional forces:

n The desire or need to be XHTML-compliant

n The need to provide high degrees of accessibility

n The desire or need to use cascading style sheets (CSS) to style pages

n The desire or need to use AJAX capabilities, and the subsequent need to
 control element IDs and the structure of any parts of the DOM

n The need to ensure the page will look the same on a number of different
Web browsers

Boykma
Text Box
Download from Wow! ebook <www.wowebook.com>

 Chapter 5 Inside Views 235

For many people, the natural equation seems to be Web Forms equals server controls.
This equation is largely true, but it’s not exactly true. Nothing really prevents you from
writing ASPX pages using plain HTML elements that are even devoid of the runat=server
attribute that adds some server-side capabilities. The point is that if you do so, you then
enter into a “do less with more” scenario because you still pay for the view state and the
complex infrastructure of Web Forms without gaining any benefit from it.

In ASP.NET MVC, you are forced to take a “close to the metal” approach when it comes
to authoring a view and you don’t pay extra costs in terms of run-time behavior.
In addition, the programming model of ASP.NET MVC leads you toward passive
and humble views that just render the data they get from the outside. All the logic is
being moved up to the controller level, where a rich abstraction layer (for example,
model binders and Convention-over-Configuration aspects) let you map input data
to a strongly typed data model for easier processing. After the work is done, you just
 attach pieces of data to the view according to the needs of the view layout.

In summary, you can always gain the freedom of using the HTML you want;
 technologically speaking, there’s nothing to stop you from getting this. The
 conventional Web Forms programming style, however, leads you to using server
 controls and losing control over the HTML—quite the opposite of what happens with
ASP.NET MVC.

The View’s Template
When using the default rendering engine, the view is a common ASPX file and can contain
virtually any markup expressions you would use in classic ASP.NET. An ASPX file for a view is
typically a single .aspx file that is limited to declaring the name of its parent view-page class.
If required, though, it can have an explicit code-behind class with some logic inside.

Adding a New View
Most of the views you add to an ASP.NET MVC application are bound to a controller and go
under the Views folder in a subfolder with the name of the controller. However, views shared
by multiple controllers (for example, error views or partial views) can be placed under the
Views\Shared folder. (See Figure 5-4.)

You can add a new view by simply adding a file in the right location or using the Add View
dialog box in Microsoft Visual Studio, which is shown in Figure 5-5. You trigger the dialog
box by right-clicking on any item under the Views folder. The right-clicked item determines
the actual destination of the view file.

236 Part II The Core of ASP.NET MVC

FIGuRE 5-4 An interior view of the Views folder in an ASP.NET MVC project.

FIGuRE 5-5 Adding a new view to an ASP.NET MVC application.

The dialog box doesn’t let you choose the actual destination of the new view file. Its default
location is based on where you right-clicked. If the file doesn’t show up where you want it to
be, it’s up to you to move it around in the right folder.

Note As long as you use the default view engine, you’re forced to keep all your views in one of
two places. They can live only under the controller’s folder below the Views folder or in the Views\
Shared folder. The default view engine won’t be able to resolve views located anywhere else.

 Chapter 5 Inside Views 237

The main parameters of a view are the name, whether it’s a partial view, whether it’s a
strongly typed view, and its master page. The name of the view is a plain string and doesn’t
need any extensions. The file created automatically has the proper extension added to it—
either .aspx for main views or .ascx for partial views. You refer to the view programmatically
using the name of the file without extension.

Partial Views
The first key decision to make about a view is whether you want it to be partial or not.
A partial view covers a fraction of the total view and is expected to be a small and reusable
piece of user interface. A partial view can’t be based on a master page, either.

In ASP.NET MVC, a partial view is analogous to a user control in Web Forms. The syntax for
a partial view is also the same syntax for a user control in Web Forms. This includes special
features such as output caching. Under the hood, rendering a partial view entails rendering
a user control, at least when using the default view engine.

A partial view in ASP.NET MVC is rendered through the ViewUserControl class, which derives
from ASP.NET’s UserControl class. The ViewUserControl class adds some extra properties
(which are listed in Table 5-3) and implements the IViewDataContainer interface. Note that
this interface exists only to abstract the ViewData property.

public interface IViewDataContainer

{

 ViewDataDictionary ViewData { get; set; }

}

It’s interesting to look at the heading of a partial view:

<%@ Control Language="C#" Inherits="System.Web.Mvc.ViewUserControl" %>

The heading doesn’t mention any code-behind class file and is limited to declaring that the
dynamic class created by the ASP.NET runtime on the fly will derive from ViewUserControl.
This also means that no code-behind class is required for the partial view. Most of the time,
in fact, you just don’t need it. But I’ll return to this point in the next section when discussing
how to fill up a view.

The typical location for a partial view is the Shared folder under Views. However, you can also
store a partial view under the controller-specific folder. This location is searched earlier in the
rendering process, too. A partial view usually gets the .ascx extension, but it can also have the
.aspx extension. Other extensions are not recognized by the default view engine.

Master Pages
If the view is not a partial view, it can have a master page. The master page in this context is
exactly the same as the master page in Web Forms. It’s a standard .master file, but it’s located
under the Views\Shared folder.

238 Part II The Core of ASP.NET MVC

In ASP.NET MVC, a master page is implemented through the services of ViewMasterPage,
which is defined as follows:

public class ViewMasterPage : MasterPage

{

 public ViewMasterPage();

 // Properties

 public AjaxHelper Ajax { get; }

 public HtmlHelper Html { get; }

 public object Model { get; }

 public TempDataDictionary TempData { get; }

 public UrlHelper Url { get; }

 public ViewContext ViewContext { get; }

 public ViewDataDictionary ViewData { get; }

 internal ViewPage ViewPage { get; }

 public HtmlTextWriter Writer { get; }

}

As you can see, it extends the ASP.NET MasterPage class with the typical helpers and
 properties of ASP.NET MVC views, such as Html, Model, and ViewContext.

By default, a master page in ASP.NET MVC doesn’t require a code-behind class. However, if
you need to expose your own programming model out of the master, you can use a <script>
server-side tag (which is the recommended approach) or manually create code-behind
 classes. Here’s a brief example:

public partial class SiteMasterExtended : System.Web.Mvc.ViewMasterPage

{

 public string PageHeading

 {

 get { return this.__PageHeading.Text; }

 set { this.__PageHeading.Text = value; }

 }

}

The sample master page class inherits from ViewMasterPage and just adds some properties.
Most of the time, extra properties are mere wrappers around some of the controls
 embedded in the master page template, as shown in the following example:

<div>

 <asp:Literal runat="server" ID="__PageHeading">The Book</asp:Literal>

</div>

Note that if you decide to add a code-behind class manually, you should ensure that Visual
Studio also creates a designer class file (xxx.master.designer.cs) that includes references to
server controls in the markup:

public partial class SiteMasterExtended

{

 protected global::System.Web.UI.WebControls.Literal __PageHeading;

.
 .
 .

}

 Chapter 5 Inside Views 239

To set properties exposed by the master view, you need to write a handler for the PreInit
event in the page life cycle, as shown here:

<%@ Page MasterPageFile="~/Views/Shared/Site.Master"

 Inherits="System.Web.Mvc.ViewPage" %>

<%@ MasterType TypeName="ProgMvc.Views.Shared.SiteMasterExtended" %>

<script runat="server" Language="C#">

 protected void Page_PreInit(object sender, EventArgs e)

 {

 this.Master.PageHeading = "Chapters";

 }

</script>

<asp:Content ...>

.
 .
 .

</asp:Content>

In Web Forms, through a PreInit handler you could also switch master pages on the fly,
as shown below.

protected void Page_PreInit(object sender, EventArgs e)

{

 this.MasterPageFile = "~/Views/Shared/VertLayout.Master";

}

In ASP:NET MVC, you don’t need this if you want to be able to switch master pages on the
fly and based on runtime conditions. Because the generation of the view is distinct process
in ASP.NET MVC, all you need to do is tell the view engine which master page it has to use.

public ActionResult Index()

{

.
 .
 .

 return View("Index", "SiteMaster");

}

You do that simply using a different overload of the controller’s View method.

Strongly Typed Views
In ASP.NET MVC, any view is expected to be isolated from the controller code. The view
should receive from the outside world any data it has to process. Data can be passed in two
nonexclusive ways: via the ViewData dictionary and via an object model.

As mentioned, ViewData is an object of type ViewDataDictionary. Any data you store in a
dictionary is treated as an object and requires casting, boxing, or both in order to be worked
on. A dictionary is definitely not something you would call strongly typed. At the same time,
a dictionary is straightforward to use and works just fine.

240 Part II The Core of ASP.NET MVC

ViewDataDictionary is kind of unique because it also features a few ASP.NET MVC–specific
properties such as the Model, ModelState, and ModelMetadata properties, as shown here:

public class ViewDataDictionary : IDictionary<string, object>,

 ICollection<KeyValuePair<string, object>>,

 IEnumerable<KeyValuePair<string, object>>,

 IEnumerable

{

 public object Model { get; set; }

 public ModelStateDictionary ModelState { get; }

 public virtual ModelMetadata ModelMetadata { get; set; }

.
 .
 .

}

The ModelState property gets information about the state of the model. It typically contains
entries describing what’s wrong, if anything, in the data being worked on in the view.
The ModelMetadata property, instead, stores information about the data being processed
by the view—the model. Metadata includes display and edit information about properties of
the model. Metadata information is obtained from a metadata provider. The default provider
is based on the Data Annotations library. (See Chapter 6, “Inside Models,” and Chapter 7,
“Data Entry in ASP.NET MVC,” for more details.)

The Model property is an alternative and object-oriented way of passing data to the view
 object. Instead of fitting flat data into a dictionary, you can shape a custom object to
 faithfully represent the data the view expects. The Model property just gives you a chance
to create a view-model object that is unique for each view. If you intend to use the Model
 property to pass data to the view, you have to make it explicit, as shown here:

public partial class YourPage : ViewPage<YourViewModel>

{

.
 .
 .

}

The view page class derives from ViewPage<T> instead of ViewPage. If you don’t use
a code-behind class, you achieve the same goal with the following page directive in the view file:

<%@ Page MasterPageFile="~/Views/Shared/Site.Master"

 Inherits="System.Web.Mvc.ViewPage<YourViewModel>" %>

The ViewData dictionary is good enough for quick-and-dirty or short-lived sites. However, it
becomes inadequate as the complexity of the view (and the number of views) grows beyond
a certain threshold. So what should you do?

ViewData vs. Model
When you start having dozens of distinct values to pass on to a view, the same flexibility
that allows you to quickly add a new entry, or rename an existing one, becomes your worst
 enemy. You are left on your own to track item names and values; you get no help from
Microsoft IntelliSense and compilers.

 Chapter 5 Inside Views 241

The only proven way to deal with complexity in software is through appropriate design.
So defining an object model for each view helps you track what that view really needs.
I suggest you define a view model class for each view you add to the application.

Having a view-model class for each view also creates the problem of choosing an appropriate
class name. You could decide to use a combination of controller and view names. For
 example, the view-model object for a view named Index invoked from the Home controller
might be named HomeIndexViewModel.

When you use a view-model class, the template for a controller method becomes the
following:

public ActionResult Index()

{

 // Perform the requested task, and get any necessary data

 object data = ...;

 // Pack data for the view

 HomeIndexViewModel model = new HomeIndexViewModel();

 PopulateModel(model, data);

 // Stores the view-model object in the transfer dictionary

 ViewData.Model = model;

 // Trigger the view

 return View();

}

You pass data to the view in one of two ways. Typically, you copy the view-model instance
into the Model property of the ViewData dictionary. As an alternative, you can pass the
 view-model object as an argument to the View function, as shown here:

return View("index", model);

In the view markup, you retrieve the view-model object using the Model property that is
conveniently exposed by the ViewPage class or the same Model property that is exposed by
the ViewData dictionary.

Note The ViewData dictionary is being pushed to the side in favor of view model objects
because of its weakly typed programming model and because, as it is often remarked, the
ViewData dictionary forces you to use magic strings to refer to stored data. All of this is
 absolutely correct and can hardly be argued. However, the ViewData programming model is
 exactly the same model we still use for Session or Cache in any flavor of ASP.NET.

Filling Up the View
An ASP.NET MVC view is made of ASPX markup, including HTML literals and server controls,
plus some code. What code, exactly? And how much code, exactly?

242 Part II The Core of ASP.NET MVC

ASPX Markup
Here’s a sample view that renders a list of chapters. The view contains some HTML
 literals and then yields to a partial view for actual rendering of the chapter information.
The executable code is wrapped in an ASP-style code block.

<asp:Content ContentPlaceHolderID="MainContent" runat="server">

 <h2>Table of Contents </h2>

 <p>

 <%

 Html.RenderPartial("TOC",

 new TocViewModel(this.ViewData["Chapters"] as IList<Chapter>));

 %>

 </p>

</asp:Content>

You render a partial view using an HTML helper method—RenderPartial. The method takes
the name of the view and some input data—the model—and then does its job. Here’s the
source code of a partial view named TOC. It’s an .ascx file whose user control class is strongly
typed and accepts input data through an instance of the class TocViewModel.

<%@ Control Language="C#" Inherits="System.Web.Mvc.ViewUserControl<TocViewModel>" %>

<%@ Import Namespace="ProgMvc.ObjectModel" %>

<%@ Import Namespace="ProgMvc.Models.ViewModels" %>

<%

 int currentPart = 0;

 foreach (Chapter ch in this.ViewData.Model.Chapters)

 {

 if (ch.PartNo > currentPart)

 {

 if (currentPart > 0)

 {

%>

<%

 }

 currentPart = ch.PartNo;

%>

 <h3>Part <% = ch.PartNo %></h3>

 <hr />

<%

 }

%>

 <small>

 <% = ch.ID %>

 <% = Html.ActionLink(ch.Title, "Chapters", new {chapterID = ch.ID}) %>

 Chapter 5 Inside Views 243

 </small>

<%

 }

%>

The source code can be a mix of HTML literals and code blocks that flow sequentially and
form a unique meta-programming expression. This code is parsed and compiled dynamically
into an ASP.NET page class and then executed like any other Web Forms page.

In code blocks, you can access any data stored in any public members of ViewPage,
ViewPage<T>, or any derived class. Most of the time, this means accessing data in the
ViewData dictionary or in the view-model object. The code shown earlier demonstrates
a strongly typed partial view. The following listing, on the other hand, illustrates a sample
view-model object:

using System.Collections.Generic;

using ProgMvc.ObjectModel;

public class TocViewModel : ITocViewModel

{

 public TocViewModel(IList<Chapter> chapters)

 {

 Chapters = chapters;

 }

 public IList<Chapter> Chapters { get; set; }

}

For completeness, here’s the source code of the Chapter class:

public class Chapter

{

 public int ID { get; set; }

 public string Title { get; set; }

 public string Abstract { get; set; }

 public int PartNo { get; set; }

 public string Status { get; set; }

}

In particular, the partial view just shown loops through a collection of Chapter objects
and writes it out in the form of a table of contents, as shown in Figure 5-6.

As you can see, chapter titles are rendered as hyperlinks. Whose responsibility is it to add the
URL? Where in the code is this indicated? It’s the trick played by the HTML helper method
ActionLink. I’ll return to the topic of HTML helpers in a moment.

244 Part II The Core of ASP.NET MVC

FIGuRE 5-6 An ASP.NET MVC view renders out a book’s table of contents.

Important Without beating around the bush, the code of a typical ASP.NET MVC view may
be quite confusing at first. It’s really kind of shocking for the average ASP.NET developer to
see. Often, the first (sometimes unconfessed) thought of the developer is that ASP.NET MVC is
a huge step backwards from classic ASP.NET. However, I have deliberately chosen to use some
 messed-up code that I definitely do not recommended that you write. That code works just fine,
but it is hard to read and subsequently hard to maintain.

In an ASP.NET MVC view, you should try to keep the logic in code blocks to a minimum and
avoid intertwined sequences of code and markup. Some developers say you should never have
even an if in the view; some others, including myself, say that, well, some simple rendering logic
(loops and ifs) are acceptable.

By keeping the view as passive as possible—one of the goals of the MVC pattern, indeed—you
reduce the view to a plain HTML template with some data placeholders and avoid creating code
paths in the template. That said, however, more control over HTML means just this—writing plain
HTML literals with the necessary amount of logic and data for the purpose you have in mind.

Finally, if you have trouble with the HTML syntax and the way in which ASP.NET intertwines it
with code, you can unplug the default view engine and roll your own or use any other publicly
available view engine. Spark and NVelocity are two view engines that many developers love.
NVelocity,in particular, is the .NET porting of a popular Java template-based tool for view
 generation. (See http://www.CodePlex.com/MvcContrib.)

Code Blocks
Code blocks are fragments of executable code delimited by <% . . . %> tags. Within those
tags, you can put virtually everything that the ASP runtime engine can understand and parse,

 Chapter 5 Inside Views 245

including variable assignments, loop statements, function declarations and, of course,
 function calls. For compatibility reasons with old ASP, the internal architecture of classic
ASP.NET pages always supported this programming model, which appears unstructured,
loose, not very rigorous, and inelegant to software purists and to, well, not just them.

This overlooked approach to page construction, however, has been revamped to have new
significance in ASP.NET MVC because of its inherent flexibility and because it allows full
 control over HTML.

Code blocks come in two flavors: inline code and inline expressions. Inline expressions are
merely shortcuts for Response.Write and preface the expression with an = (equal) symbol:

<!-- Sample inline expression -->

<% = ViewData["ChapterID"] %>

Inline code is plain code in code block brackets and requires a trailing semi-colon. An inline
expression outputs the value of the expression in the output stream; an inline code block
simply executes the specified code to create or modify some local state.

Code blocks are compiled into methods added to the page that ASP.NET creates dynamically
when processing the view for the first time. Any code block is associated with a server-side
parent element that inherits from Control. It’s associated with the page if no element can
be found with the runat attribute. (The Page class does have the Control class in its list
of ancestors.)

Why Control? Because the Control class defines a little-used method named
SetRenderMethodDelegate. This method takes a delegate method and uses it to render some
markup. Here’s an excerpt from the render delegate that ASP.NET uses to render the mix of
markup and code blocks shown earlier:

void __Render__control1(HtmlTextWriter __w, Control parameterContainer)

{

 int currentPart = 0;

 foreach (Chapter ch in this.ViewData.Model.Chapters)

 {

 if (ch.PartNo > currentPart)

 {

 if (currentPart > 0)

 {

 __w.Write("\r\n \r\n");

 }

 currentPart = ch.PartNo;

 __w.Write(" \r\n \r\n <h3>Part ");

 __w.Write(ch.PartNo);

 __w.Write("</h3>\r\n <hr />\r\n \r\n");

 }

.
 .
 .

 }

}

246 Part II The Core of ASP.NET MVC

This code comes directly from the temporary files that ASP.NET creates on the Web server
machine during execution. The root directory is located under Temporary ASP.NET Files,
which in turn lives under the Windows Temp folder. The exact directory for your application
is known only at run time and can be detected by watching the content of the System.Web
.HttpRuntime.CodegenDir expression during a debug session. (See Figure 5-7.)

FIGuRE 5-7 Detecting the run-time folder to snoop for details about the compilation of code blocks.

Adding Logic to the View
In ASP.NET Web Forms, the view (that is, the page) contains all the logic for both rendering
and processing. In ASP.NET MVC, processing logic and rendering logic are distinct and
 belong to controllers and views. However, there’s a gray area of logic that could belong to
both processing and rendering. Sometimes it depends on the developer’s vision of things;
sometimes it’s an architectural decision; sometimes it simply happens inadvertently.

Let’s recall a couple of guidelines that apply to the design of the view.

The recommended approach when rendering views using ASP.NET MVC is to provide for all
view data dependencies using only data that is explicitly provided through the view dictionary
or, better yet from a design perspective, the view-model object. (You can provide data using
both the dictionary and a strongly typed object.)

In addition, the view should contain the least possible amount of logic that is not strictly
 related to rendering. For example, the following excerpt of markup is arguably the best option:

< !-- Other markup here -->

.
 .
 .

<% int id = (int)ViewData[“ChapterID”];

 if (id == 0)

 {

 Html.RenderPartial(“TOC”, new TocViewModel(ViewData[“Chapters”]));

 }

 else

 {

 Html.RenderPartial(“SingleChapter”, new ChapterViewModel(ViewData[“Chapter”]));

 }

%>

 Chapter 5 Inside Views 247

The code first checks the value of an element in the view dictionary and then decides which
partial view to render. This code, in particular, doesn’t look bad and still relies only on
 provided data. However, it attributes some extra power to the view object. The view contains
some logic—deciding about the partial view to render—that is not about the physical
 rendering of the view, such as a foreach statement.

You should consider whether the decision about the partial view really belongs to the view.
In general, it’s preferable to move any logic up to the controller. The controller method that
invokes the previous view, then, looks like this:

public ActionResult Chapters(int? chapterID)

{

 // Deal with input parameters

 int id = 0;

 if (chapterID.HasValue)

 id = chapterID.Value;

 // Perform any task, and acquire any data

 IContentServices service = ...;

 // Render the entire TOC

 if (id == 0)

 {

 IList<Chapter> chapters chapters = service.LoadChapters();

 return View("TOC", new TocViewModel(chapters));

 }

 // Render details about a single chapter

 Chapter chapter = service.LoadChapter(id);

 return View("SingleChapter", new ChapterViewModel(chapter));

}

The net effect is that you now have two simpler views with a minimum amount of logic.
If you have reasons to maintain partial views, you can use a view as simple as the one
shown here:

<!-- Other markup here -->
.
 .
 .

Html.RenderPartial("TOC");

The partial view automatically receives all the information you passed to the view, dictionary,
and model. You can also restrict the information for the partial view if that best suits the
needs of your application.

A further optimization to the controller’s method can be obtained using an internal method
that encapsulates the logic to decide about which view to render:

public ActionResult Perform(object data)

{

 // Deal with input parameters

.
 .
 .

248 Part II The Core of ASP.NET MVC

 // Perform any task, and acquire any data

.
 .
 .

 // Render the entire TOC

 MyViewModel model = ...;

 return GetMethodView(model);

}

private ActionResult GetViewModel(MyViewModel model)

{

.
 .
 .

}

The View: Passive or Supervising?
The MVC pattern that ASP.NET MVC is based on suggests the view be as thin
and passive as possible. To reinforce the concept, the ASP.NET MVC tools in Visual
Studio don’t even add a code-behind file to each view you add. The message couldn’t
be clearer—the thinner the better.

This is the theory, however. In the real-world, a really passive view can be quite
 cumbersome to write and maintain and would add a lot of complexity to the controller.
A thin view contains nearly no logic and inevitably takes you toward a multiplicity of
smaller and extremely simple views. From here, the possible maintenance required
could be a nightmare.

If you opt for a passive view, you have an inherently more testable system because
the logic in the view is reduced to an absolute minimum. Subsequently, you run no
 serious risk at all by not testing the view. Any piece of code can contain mistakes, but
in the case of a passive view the extreme simplicity of the code allows only for gross
and patent mistakes that can be easily caught without any automated procedure.

In software, as well as in physics, a sort of conservation law applies. In physics, it’s about
the conservation of energy; in software it’s about the conservation of complexity.
So the complexity taken out of the view moves to another layer—the controller—
and a passive view is inevitably coupled with a more complex controller. From here,
you encounter the mantra these days as far as ASP.ENT MVC is concerned: thin view,
fat model. In the end, opting for a passive view is a tradeoff between high testability
and complexity of the controller classes.

You can also opt for a more active view that contains some logic as far as data binding
and data formatting is concerned. Developing a richer view might be easier, and it
 basically distributes the required complexity between the view and the controllers.
The view needs to take care of some synchronization and adaptation work to make any
input data usable by user interface elements. However, this code in an ASP.NET MVC
scenario can only go into a server-side <script> tag. (In ASP.NET MVC , code-behind
classes are still supported but kind of banned.)

 Chapter 5 Inside Views 249

When do you really need a supervising view? For one thing, you need it if you make
use of some ASP.NET server controls. In this case, the code inside of the view lets you
configure some of these controls programmatically and, more likely, gives you a chance
to handle some internal events, such as those fired by data-bound controls during
their rendering. Data binding done through server controls is the specific scenario that
a richer, supervising view will address.

View and ASP.NET Intrinsics
From the view, you can certainly access some ASP.NET intrinsic objects, such as Cache
and Session. The issue, though, is whether you should. And, no, you shouldn’t.

The view should remain disconnected from the machinery of the runtime environment. If the
view needs to consume some data, that data must be passed explicitly to the view, using the
view dictionary or the model.

Accessing any ASP.NET intrinsic object is the responsibility of the controller, as shown here:

public ActionResult AddToShoppingCart(ShoppingItem item)

{

 ShoppingCart cart = this.Session["CurrentShoppingCart"] as ShoppingCart;

 if (cart == null)

 throw new InvalidOperationException("Invalid shopping cart");

 // Do some work on the shopping cart

 cart.Items.Add(item);

.
 .
 .

 // Save cart back to the session state

 this.Session["CurrentShoppingCart"] = cart;

 // Show the current content of the cart.

 // The view receives any data it needs to display.

 // It doesn't have to retrieve any of it

 ViewData["CurrentCart"] = cart;

 return View("ShoppingCart");

}

To test the controller and simulate action on the session state (or any other intrinsic object),
you can create a mock object for the HttpContextBase class that contains abstractions
for any intrinsic objects. (I’ll cover more details on testing in Chapter 10, “Testability
and Unit Testing.”)

View and Configuration Settings
ASP.NET comes with a bunch of expression types that you can intersperse with HTML literals
and server controls. In particular, you can use dynamic expressions such as those in Table 5-4.

250 Part II The Core of ASP.NET MVC

TABLE 5-4 ASP.NET dynamic expressions

Syntax Description

$AppSettings:[Attribute] Returns the value of the specified attribute from
the <appSettings> section of the configuration file

$ConnectionStrings:[Entry].[Attribute] Returns the value of the specified attribute of the
given entry in the <connectionStrings> section of
the configuration file

$Resources:[ResourceFile],[ResourceName] Returns the value of the specified global resource

You’ll seldom find a need to use a connection string from within an ASP.NET MVC view.
(If you happen to need to do this, well, make sure you’re doing the right thing and, especially,
that you’re using the right tool.)

It’s more likely that you’ll need to read directly from the view some application-specific
 settings, such as those you might have in the <appSettings> section of the configuration file.
Should you do this?

Again, the guideline is the same—the view should receive any data it needs from the
 controller. However, in my opinion, using $AppSettings expressions in the view is not a deadly
sin, and it’s acceptable as long as it’s really beneficial for the team (as in it really saves you
time and increases productivity.) Take a look at the following code:

<asp:Literal runat="server" Text="<% $AppSettings:AppVersionNumber %>" />

It assigns the Text property of the Literal control the value associated with the
AppVersionNumber entry in the <appSettings> section:

<appSettings>

 <add key="AppVersionNumber" value="8.2.2001" />

</appSettings>

Note that any $ expression requires a server control. You can’t use it as a free-floating
 expression within the ASPX source. The Literal is the simplest control you can attach
a $ expression to.

Localizing a View
The scenario for which I would seriously consider using some Literal controls and
$ expressions is localization. Here’s how you can bind into a view a piece of text coming
from the application’s resource file:

<h2>

 <asp:Literal runat="server" Text="<% $Resources:Globals, WelcomeMessage %>" />

</h2>

 Chapter 5 Inside Views 251

In the example, Globals is the name of one of the .resx resource files you might have in the
project. WelcomeMessage is the name of one of the entries in the dictionary file.

You must be aware that the $Resources expression builder doesn’t retrieve resources local
to a page; it works only with global .resx files located in the App_GlobalResources folder.
Resources local to a view are supported in ASP.NET MVC, but they require you to use server
controls extensively.

From a design perspective, the principle of view isolation still holds true. If you follow the
principle, you might end up with a controller like the one shown here:

public ActionResult Index()

{

 // Load text to populate placeholders in the view

 this.FillViewModel();

 // Trigger the next view

 return View();

}

private void FillViewModel()

{

 // Retrieve localized text from an RESX file

 string msg = HttpContext.GetGlobalResourceObject("globals", "WelcomeMessage");

 ViewData["WelcomeMessage"] = msg;

.
 .
 .

 // An alternate approach that adds one more layer of abstraction.

 // ApplicationContext is a custom class we discussed in Chapter 4 and

 // represents a global container of common objects such as references to

 // IoC containers, and resolved dependencies such as the resource provider.

 IResourceProvider resourceProvider = ApplicationContext.ResourceProvider;

 ViewData["WelcomeMessage"] = resourceProvider.GetString("globals", "WelcomeMessage");

.
 .
 .

}

Generally, in ASP.NET MVC the support for localization is limited to adapting what was
 already available in ASP.NET Web Forms. I’ll return on this in Chapter 8. “The ASP.NET MVC
Infrastructure.”

Note As you might recall, $ expressions are customizable. To create a custom expression, you
have two basic tasks to perform. First, create a new class that inherits from ExpressionBuilder
and, second, register it in the <compilation> section of the configuration file. In doing so, you
enable an ASPX file to contain any expression that your code is capable of retrieving. Custom
 expressions can be used in ASP.NET MVC views without limitations. Keep in mind, however, that
the more logic you add, the more you compromise the isolation level of your view.

252 Part II The Core of ASP.NET MVC

HTML Helpers
Writing HTML literals in a view can soon become a repetitive and error-prone task. How
would you output, say, an HTML input element with some of the attributes set to computed
or programmatically passed values?

In classic ASP.NET, you would use a TextBox control and set (or have set) corresponding
properties programmatically. As you’ll see later, a TextBox control is a valid option in ASP.NET
MVC, too; however, it involves much more of a workaround than a direct, clean solution.
ASP.NET MVC is designed to give page authors total control over any generated HTML
 literals. The TextBox, as well as any other server controls, is a black box and its generated
HTML cannot be fully controlled.

HTML helpers exist solely to help you with the writing of HTML markup. They are not
 mandatory and can be happily avoided if that is what you want. As the name suggests, HTML
helpers just help you write ASP.NET MVC views more seamlessly.

An HTML helper is a method on a system class—the HtmlHelper class—that outputs an HTML
string based on the provided input data. In a way, an HTML helper method is a simplified
and lightweight version of an ASP.NET server control except that it’s just tailor-made for
ASP.NET MVC. An HTML helper method has no view state, no postbacks, and no page life
cycle and events; it consists of a standard HTML template that gets filled with provided data.

The ASP.NET MVC framework supplies a few HTML helpers out of the box, including
CheckBox, ActionLink, and RenderPartial. The stock set of HTML helpers is presented
in Table 5-5.

TABLE 5-5 Stock set of HTML helper methods

Method Type Description

BeginForm,
BeginRouteForm

Form Returns an MvcForm object that represents
an HTML form

EndForm Input Void method, closes the pending </form> tag

CheckBox, CheckBoxFor Input Returns the HTML string for a check box input element

Hidden, HiddenFor Input Returns the HTML string for a hidden input element

Password, PasswordFor Input Returns the HTML string for a password input element

RadioButton,
RadioButtonFor

Input Returns the HTML string for a radio button input
element

TextBox, TextBoxFor Input Returns the HTML string for a text input element

Label, LabelFor Label Returns the HTML string for an HTML label element

(Note: requires ASP.NET MVC 2)

ActionLink, RouteLink Link Returns the HTML string for an HTML link

DropDownList,
DropDownListFor

List Returns the HTML string for a drop-down list

 Chapter 5 Inside Views 253

Method Type Description

ListBox, ListBoxFor List Returns the HTML string for a list box

TextArea, TextAreaFor TextArea Returns the HTML string for a text area

Partial Partial Returns the HTML string incorporated in the specified
user control

(Note: requires ASP.NET MVC 2)

RenderPartial Partial Writes the HTML string incorporated in the specified
user control to the output stream

ValidationMessage,
ValidationMessageFor

Validation Returns the HTML string for a validation message

ValidationSummary Validation Returns the HTML string for a validation summary
message

Note that xxxFor helpers require ASP.NET MVC 2. Any xxxFor helper differs from the base
version because it accepts a lambda expression, such as shown here:

<%= Html.TextBoxFor(model => model.FirstName) %>

<%= Html.ValidationMessageFor(model => model.FirstName) %>

The native set of HTML helper methods is definitely a great help, but it’s probably insufficient
for many real-world applications. Native helpers, in fact, only cover the markup of basic
HTML elements. In this regard, HTML helpers are significantly different from server controls
because they completely lack abstraction over HTML.

Extending the set of HTML helpers is easy, however. All that is required is an extension
method for the HtmlHelper class. In Chapter 11, I’ll go into the details of a few custom HTML
helper methods. For now, let’s limit the discussion to examining the native methods in
ASP.NET MVC version 1 and version 2.

The HtmlHelper Class
You might have noticed the Html object being used in some snippets of an ASP.NET MVC
view. The Html object is a property of the ViewPage and ViewUserControl classes and points
to an instance of the HtmlHelper class. The class owes most of its popularity to its numerous
extension methods, but it also has a number of useful native methods. Some of them are
listed in Table 5-6.

TABLE 5-6 Most popular native methods on HtmlHelper

Method Description

AntiForgeryToken Returns the HTML string for a hidden input field stored with the
 antiforgery token. (See Chapter 4 for more details.)

AttributeEncode Encodes the value of the specified attribute using the rules of
HTML encoding.

254 Part II The Core of ASP.NET MVC

Method Description

EnableClientValidation A Boolean method, gets and sets the internal flag that enables
 helpers to generate code for client-side validation.

(Note: requires ASP.NET MVC 2)

Encode Encodes the specified value using the rules of HTML encoding.

HttpMethodOverride Returns the HTML string for a hidden input field used to override
the effective HTTP verb to indicate that a PUT or DELETE operation
was requested.

(Note: requires ASP.NET MVC 2)

In addition, the HtmlHelper class provides a number of public methods that are of little
use from within a view but offer great support to developers writing custom HTML helper
 methods. A good example is GenerateRouteLink, which returns an anchor tag containing
the virtual path for the specified route values.

HTML Encoding
ASP.NET 4 Web Forms and, subsequently, ASP.NET MVC 2 provide a new compact syntax
to automatically HTML-encode any text being emitted to the output stream. Consider the
 following code:

<%: ViewData["UserName"] %>

It’s equivalent to the following:

<% Html.Encode(ViewData["UserName"]) %>

What if you use the compact syntax on a piece of markup that is already encoded? Without
countermeasures, the text will be inevitably double-encoded. Aware of the possibility
that developers would be using the new auto-encoding syntax, the development team
 decided to refactor all HTML helpers in ASP.NET MVC 2 to make them return a new type—
MvcHtmlString. Here, for example, is the new definition of the TextBox helper method:

// Returns a text input tag in ASP.NET MVC 2

public static MvcHtmlString TextBox(this HtmlHelper htmlHelper, string name, object value)

{

.
 .
 .

}

The MvcHtmlString type is a smart wrapper for a string that contains HTML, and it exposes
the IHtmlString interface. The auto-encoding feature doesn’t apply to any values that
 implement IHtmlString. In this way, double-encoding is avoided and you have an extremely
simple and effective way to encode all your output.

 Chapter 5 Inside Views 255

Rendering HTML Forms
The unpleasant work of rendering a form in ASP.NET MVC occurs when you have to
 specify the target URL. The BeginForm and BeginRouteForm helpers can do the ugliest work
for you. The following code snippet shows how to write a simple input form with a couple of
fields, user and password:

<% using (Html.BeginForm()) { %>

 <div>

 <fieldset>

 <legend>Account Information</legend>

 <p>

 <label for="userName">User name:</label>

 <%= Html.TextBox("userName") %>

 <%= Html.ValidationMessage("userName") %>

 </p>

 <p>

 <label for="password">Password:</label>

 <%= Html.Password("password") %>

 <%= Html.ValidationMessage("password") %>

 </p>

.
 .
 .

 <p>

 <input type="submit" value="Change Password" />

 </p>

 </fieldset>

 </div>

<% } %>

The BeginForm helper takes care of the opening <form> tag. The BeginForm method,
 however, doesn’t directly emit any markup. It’s limited to creating an instance of the
MvcForm class, which is then added to the control tree for the page and rendered later.

To close the tag, you can use the EndForm helper or rely on the using statement as in the
preceding example. The using pattern ends up invoking the Dispose method on the MvcForm
object, which in turn will emit the closing </form> tag.

By default, BeginForm renders a form that posts back to the same URL and, subsequently, to
the same controller action. Other overloads on the BeginForm method allow you to specify
the target controller’s name and action, any route values for the action, HTML attributes,
and even whether you want the form to perform a GET or a POST. The following example
shows a form that posts to a controller named Memo to execute an action named Update
and passes a collection of route values:

<% Html.BeginForm("Update", "Memo", new RouteValueDictionary{ {"MemoID", 100}}); %>

.
 .
 .

<% Html.EndForm(); %>

256 Part II The Core of ASP.NET MVC

After you have done this, generating the resulting URL and arranging the final markup is no
longer a concern of yours.

BeginRouteForm behaves like BeginForm except that it can generate a URL starting from
an arbitrary set of route parameters. In other words, BeginRouteForm is not limited to the
 default route based on the controller name and action.

Note In HTML, the <form> tag doesn’t allow you to use anything other than the GET and
POST verbs to submit some content. In ASP.NET MVC 1.0, to use a different verb (such as PUT
or DELETE), you have to resort to JavaScript and direct programming via an AJAX framework.
In ASP.NET MVC 2, a new HTML helper—HttpMethodOverride—comes to the rescue. The helper
method emits a hidden field whose name is hard-coded to X-HTTP-Method-Override and whose
value is PUT, DELETE, or HEAD. The content of the hidden field overrides the method set for the
form, thus allowing you to invoke a REST API also from within the browser. The override value
can also be specified in an HTTP header with the same X-HTTP-Method-Override name or in
a query string value as a name/value pair. The override is valid only for POST requests.

Rendering Input Elements
All HTML elements that can be used within a form have an HTML helper to speed up
 development. Again, there’s really no difference from a functional perspective between using
helpers and using plain HTML. Here’s an example of a check box element, initially set to true,
but disabled:

<% = Html.CheckBox("ProductDiscontinued", true,

 new Dictionary<string, object>() {{ "disabled", "disabled" }})) %>

You also have facilities to associate a validation message with an input field. You use the
Html.ValidationMessage helper to displays a validation message if the specified field contains
an error. The message can be indicated explicitly through an additional parameter in the
helper, or the method can figure it out by looking at messages in the ModelState collection
in the ViewData object. All validation messages are then aggregated and displayed via the
Html.ValidationSummary helper.

I’ll return to input forms and validation in Chapter 7, “Working with Input Foms.”

Action Links
As mentioned, creating URLs programmatically is a boring and error-prone task in
ASP.NET MVC. For this reason, helpers are more than welcome, especially in this context.
In fact, the ActionLink helper is one of the most frequently used in ASP.NET MVC views.
Here’s an example:

<%= Html.ActionLink("Home", "Index", "Home") %>

 Chapter 5 Inside Views 257

Typically, an action link requires the link text, the action name, and optionally the controller
name. The HTML that results from the example is the following:

Home

In addition, you can specify route values, HTML attributes for the anchor tag, and even
a protocol (for example, HTTPS), host, and fragment.

The RouteLink helper works in much the same way, except it doesn’t require you to specify
an action. With RouteLink, you can use any registered route name to determine the pattern
for the resulting URL.

The text emitted by ActionLink is automatically encoded. This means you can’t use any HTML
tag in the link text that the browser will be led to consider as HTML. In particular, you can’t
use ActionLink for image buttons and image links. However, to generate a link based on
 controllers and actions data, you can use the UrlHelper class.

An instance of the UrlHelper class is associated with the Url property on the ViewPage type.
The code here shows the Url object in action.

<a href="<%= Url.Action("Edit") %>">

The UrlHelper class has a couple of methods that behave nearly similar to ActionLink
and RouteLink. Their names are Action and RouteLink.

Templated HTML Helpers
HTML helpers serve the purpose of letting you write HTML markup faster. What kind of
HTML markup do you need to write most of the time? All in all, I’d say that it’s lists of custom
data objects and input forms.

You render a list by looping over a collection of data items and then building a user interface
against each data item. You render an input form by building an editable user interface
against a given data item. These two common scenarios share one aspect—rendering a data
item in a way that is quick, effective, and especially flexible. To achieve this goal, ASP.NET
MVC 2 introduced templated HTML helpers.

Templated HTML helpers aim to make the display and editing of data objects quick to write
and independent from too many HTML and CSS details. As you’ll see in greater detail in
Chapter 6 and Chapter 7, the emerging trend entails building a view-specific object model—
the view-model—and having objects in the model drive the rendering of the user interface.

To achieve this, you can decorate your view-model objects with special data annotation
 attributes that an ad hoc rendering API will recognize and handle properly. The developer
still maintains tight control over the user interface, but attributes in the model establish
a number of conventions and save the developer from a number of repetitive tasks.

258 Part II The Core of ASP.NET MVC

Note Implemented through attributes, data annotations are an emerging cross-platform .NET
 solution for building a view-specific object model that might or might not coincide with the
 domain model you have in the business layer. You can use data annotations with Entity Framework
classes or with classes in your own handmade data model, and you can have components that
understand annotations in Microsoft Silverlight, ASP.NET Dynamic Data, Windows Presentation
Foundation (WPF), and ASP.NET MVC. From a design perspective, this means planning a view-
model on the presentation layer and possibly having an adapter layer in the business layer to map
from view-model objects to domain model objects. The presentation and business data models,
though, can coincide if that simplifies your efforts while not compromising the overall design.

Flavors of a Templated Helper
In ASP.NET MVC 2, you have two essential templated helpers: Editor and Display. They work
together to make the code for labeling, displaying, and editing data objects easy to write
and maintain. The optimal scenario for using these helpers is that you are writing your lists
or input forms around annotated objects. However, the new family of templated helpers can
work with both scalar values and composite objects.

Templated helpers actually come with three overloads. Taking the Display helper
as an example, you have the following more specific helpers—Display, DisplayFor,
and DisplayForModel. There’s no functional difference between Display, DisplayFor,
and DisplayForModel. They differ only by the input parameters they can manage.

The Display helper accepts a string indicating the name of the property in the ViewData
 dictionary or on the model to be processed. Note that you don’t have to know the exact
type of the model in order to use this helper.

<%= Html.Display("FirstName") %>

The DisplayFor helper accepts a model-based expression and subsequently requires that the
model type is known within the view. (The ViewPage or ViewUserControl must be strongly
typed.)

<%= Html.DisplayFor(model => model.FirstName) %>

Finally, DisplayForModel is a shortcut for DisplayFor getting the expression model => model.

<%= Html.DisplayForModel() %>

You can use DisplayForModel even if you don’t know the exact type of the model inside of
the view context.

I’ll be referring to templated editors using the main name that identifies the functionality
such as Display or Editor.

All flavors of templated helpers have the special ability to process metadata (if any)
and adjust their rendering accordingly—for example, showing labels and adding validation.
The display and editing capabilities can be customized using templates, as discussed in
a moment. The ability of using custom templates applies to all flavors of a templated helper.

 Chapter 5 Inside Views 259

Editing Helpers in Action
The purpose of the Editor helper is to let you edit the specified value or object. The editor
recognizes the type of the value it gets and picks up a made-to-measure template for
 editing. Predefined templates exist for object, string, Boolean, and multiline text, while
 numbers, dates, and GUIDs fall back to the string editor.

The helper editor works great with complex types. It generically iterates over each public
property and builds up a label and an editor for the child value. Nested objects are
 supported natively.

You can customize the editor by creating a few partial views by convention in the
EditorTemplates folder of the view. It can be under a controller-specific subfolder or under
the Views\Shared folder as well. (See Figure 5-8.)

FIGuRE 5-8 Custom templates for editors and visualizers in Visual Studio 2010.

When you invoke an editor for a given type, you can then point the editor to your template.
Here’s an example that uses the date.ascx view to edit a DateTime property:

<fieldset>

 <legend>Personal Information</legend>

.
 .
 .

 <p>

 <%= Html.LabelFor(p => person.Birthdate)%>

 <%= Html.EditorFor(p => person.Birthdate, "Date") %>

 </p>

</fieldset>

260 Part II The Core of ASP.NET MVC

Let’s have a look at the internals of the date.ascx template:

<%@ Control Language="C#" Inherits="System.Web.Mvc.ViewUserControl" %>

<%@ Import Namespace="Samples" %>

<table>

<tr>

 <td><%= Html.Label("Day") %></td>

 <td><%= Html.TextBox("Day", ((DateTime)this.Model).Day)%></td>

</tr>

<tr>

 <td><%= Html.Label("Month")%></td>

 <td><%= Html.TextBox("Month", ((DateTime)this.Model).Month) %></td>

</tr>

<tr>

 <td><%= Html.Label("Year")%></td>

 <td><%= Html.TextBox("Year", ((DateTime)this.Model).Year)%></td>

</tr>

</table>

The specified date is edited through three distinct text boxes for day, month, and year, as you
can see in Figure 5-9. The Model expression the partial view refers to is exactly the value
computed by the lambda expression passed as an argument to EditorFor.

FIGuRE 5-9 A custom editor for a DateTime value.

You can also force a property to be considered of a given type if that helps the helper to
 resolve the template. You do that using the DataType or UIHint annotations:

public class Person

{

.
 .
 .

 Chapter 5 Inside Views 261

 [DataType(DataType.EmailAddress)]

 public String Email {get; set;}

 [UIHint("Date")]

 public DateTime Birthday {get; set;}

}

In particular, you use DataType to force a string property to use a given template. You use
UIHint to force any object properties to use a given edit template.

The Display Helper in Action
The Display helper is the read-only counterpart of Editor. It has the same set of capabilities
except that it’s expected to display read-only templates. The following example shows
a possible display template for a DateTime value:

<%@ Control Language="C#" Inherits="System.Web.Mvc.ViewUserControl" %>

<%= Html.Encode(((DateTime)this.Model).ToString("ddd dd MMM yyyy")) %>

Figure 5-10 shows the custom template in action.

FIGuRE 5-10 A custom display template for a DateTime value.

Custom display templates go to the DisplayTemplates folder under Views. (See Figure 5-8.)

A minor difference between Editor and Display is that Display features a default display
 template for e-mail addresses, whereas Editor supports MultilineText. This is in addition to the
standard templates for object, Booleans, strings, and numbers.

Datagrids and Paged Views
As long as you use the default view engine, you reuse some of the skills you might have
 developed on Web Forms. To some extent, in fact, server controls work, master pages work,
and data binding work.

262 Part II The Core of ASP.NET MVC

However, assuming that authoring an ASP.NET MVC view is the same as authoring a Web
Forms view would be a big mistake. The first recommendation for those trying to use server
controls in ASP.NET MVC is clear and unambiguous:

Do not use server controls.

Avoiding server controls saves you from a number of potential pitfalls and headaches. If you
have a thorough knowledge of how both ASP.NET Web Forms and ASP.NET MVC work under
the hood, and if you have a strong reason to do it, you can take the plunge into server-side
programming in ASP.NET MVC. In any other case, avoiding server controls is the best choice.

Important ASP.NET MVC 2 is much less forgiving than ASP.NET MVC 1 as far as server
 controls are concerned. Using server controls to render a static page that doesn’t interact with
the user is still doable (even though not necessarily the best option). Using server controls
that operate postbacks (i.e., drop-down lists whose selection becomes input for a successive
 requests or pageable datagrids) is highly problematic in ASP.NET MVC 2. The reason is that due
to a change in the way in which the page is rendered, page events like Init and Load are still
fired but the IsPostBack property is always false. This fact breaks a number of consolidated Web
Forms practices and makes using server controls in MVC just a dangerous trip. So avoid server
 controls in ASP.NET MVC 2. In ASP.NET MVC 1, you have best chances to arrange a Web Forms
like solution in MVC. However, one thing that I’ve learned about it is the following: if using server
controls in MVC works, it is likely a pure stroke of luck.

In the next example, I’ll first show how to use a GridView server control to render out a table
of data. I’m quite sure that what you see won’t really scare you. So you might be tempted
to go ahead and add, say, a drop-down list to filter the displayed content. As you’ll see,
 operations that are just trivial in Web Forms all of sudden become difficult to accomplish in
ASP.NET MVC. Why is that so? It’s all about the lack of automatic statefulness you experience
in ASP.NET MVC.

Using Server Controls
When it comes to displaying a table of data over the Web, it’s hard to find a tool that
weds effectiveness and productivity better than a DataGrid control or a GridView control.
While waiting for a component model to come (if one ever does) and to see what third-party
 vendors have to offer in this regard, for now you need to build a table using your own helper
or a mix of HTML literals, data, and maybe the DisplayFor helper.

If you try to do it with a GridView here’s what you end up with:

<form runat="server">

 <asp:GridView ID="gridOrders" runat="server"

 AutoGenerateColumns="false"

 OnRowDataBound="gridOrders_RowDataBound">

 Chapter 5 Inside Views 263

 <Columns>

 <asp:BoundField DataField="Id" HeaderText="ID" />

 <asp:BoundField DataField="CustomerName" HeaderText="Customer" />

 <asp:BoundField DataField="DueDate" HeaderText="Due by" />

 <asp:BoundField DataField="OrderDate" HeaderText="Order issued" />

 <asp:BoundField DataField="TotalDue" HeaderText="Amount" />

 </Columns>

 </asp:GridView>

</form>

To start, you need a server-side form element. This doesn’t interfere with other HTML forms
you have around the view. You are restricted to having exactly one server-side form, but you
can have, in the same view, as many plain HTML forms as you need.

The GridView control can define its own event handlers, such as the handler for the
RowDataBound event, and it can be configured to display data with the usual extreme
 freedom. You can use, for example, templated columns and any formatting style you prefer.
Here’s the RowDataBound handler, which offers an even more advanced form of control over
the HTML being emitted:

<script runat="server">

 protected void gridOrders_RowDataBound(object sender, GridViewRowEventArgs e)

 {

 // Grab a reference to the current data item

 var model = e.Row.DataItem as SalesOrderViewItem;

 if (model == null)

 return;

 // Add a tooltip with the company address

 e.Row.ToolTip = model.Address;

 }

</script>

In this example, the GridView is bound to a collection of data transfer objects of type
SalesOrderViewItem.

The key step for using server controls in an ASP.NET MVC view is binding data to the
GridView control. This can happen only in the Page_Load event of the ViewPage class.

<script runat="server">

protected void Page_Load(object sender, EventArgs e)

{

 var model = ViewData.Model;

 gridOrders.DataSource = model.Orders;

 this.DataBind();

}

</script>

At this point, you surely understand what Figure 5-11 illustrates.

264 Part II The Core of ASP.NET MVC

FIGuRE 5-11 A table of data rendered using a GridView server control.

The view looks nice, and there’s really nothing that makes it different in some way because
a server control was used. Let’s turn our attention now to the drop-down list.

Intricacies of the Postback Model in ASP.NET MVC 2
It’s likely that you’ll want to add a list to let users filter orders by customer. This means
 populating a drop-down list and binding the current selection to the grid. Obviously, you
can add such a list using plain HTML. But I just want you to experience what it means to use
a server control. So here’s some markup for the DropDownList control:

<asp:DropDownList runat="server" ID="ddCustomerList"

 AutoPostBack="true"

 DataTextField="Name"

 DataValueField="Id" />

In Page_Load now you need to take care of the additional drop-down list control:

protected void Page_Load(object sender, EventArgs e)

{

 if (!this.IsPostBack)

 {

 var model = ViewData.Model;

.
 .
 .

 ddCustomerList.DataSource = model.Customers;

 this.DataBind();

 }

}

This code may work in ASP.NET MVC 1, but it won’t certainly in ASP.NET MVC 2. Due to
changes to the Web Forms view engine occurred in ASP.NET MVC 2, in fact, the postback is
never detected. As you may easily guess, this causes a number of issues with server controls.
If you know deeply enough ASP.NET Web Forms, you can probably enter some hacks to still
have a server-side drop-down list and datagrid work together. Honestly, though, that closely
resembles spaghetti-code and is of no utility to embark in such adventures. If the primary
benefit of using Web Forms and server controls is productivity, this aspect is the first you say
goodbye in the context of ASP.NET MVC.

 Chapter 5 Inside Views 265

So what’s left? Just using the built-in tools of ASP.NET MVC that are equally effective after
an initial startup time.

Building a Grid of Data with HTML Helpers
The key assumption of ASP.NET MVC is that the view receives from the controller all the data
it needs to display. So if you plan to display a grid then the collection of data items is being
provided via ViewData or the view model object. In light of this, the following code is all you
need to render a grid of data:

<table id="gridOrders">

 <tr>

 <th scope="col">ID</th>

 <th scope="col">Customer</th>

 <th scope="col">Order issued</th>

 </tr>

 <% foreach (Order order in ViewData.Model.Orders)

 {%>

 <tr title="<%= order.Customer.Address %>">

 <td><%= order.OrderID %></td>

 <td><%= order.Customer.CompanyName %></td>

 <td><%= String.Format("{0:dd MMM yy}", order.OrderDate) %></td>

 </tr>

 <% } %>

</table>

The final table contains three columns with the order ID, company name, and date of the
 order. Refreshing the grid based on the selected customer is easy too. You need a classic
HTML form and a drop-down list with a static ID, as below:

<% using (Html.BeginForm("Index", "Home"))

 {%>

 <%= Html.DropDownList("ddCustomerList",

 new SelectList(ViewData.Model.Customers,

 "CustomerID",

 "CompanyName")) %>

 <input type="submit" value="Load" />

 <!-- Data grid goes here -->

.
 .
 .

 <p>Total orders: <%= ViewData.Model.Orders.Count %></p>

<% } %>

The method Index on the HomeController class will handle the form post and the current
 selection of the drop-down list will be associated with a matching parameter:

public ActionResult Index(string ddCustomerList)

{

.
 .
 .

}

266 Part II The Core of ASP.NET MVC

Figure 5-12 shows a grid generated with ASP.NET MVC tools.

FIGuRE 5-12 A table of data rendered using your own markup and HTML helpers

Note Just giving a drop-down list a predictable ID is a serious issue when you try to use server
controls in ASP.NET MVC. You end up handling the post in a controller method, but here you
have no reference to the control instance to ask about its unique ID and have no guidance
on how to help the default model binder to resolve posted data into method arguments. The
model binder can do its job only if the posting control doesn’t belong to any naming container
 including panel controls and master pages. This problem has a practicable workaround in
ASP.NET 4 thanks to the new ClientIDMode property, but not in ASP.NET 3.5.

Having you designed the grid with your own markup, making it more complex
(i.e., hierarchical) is far from impossible. Building a HTML helper for a grid is definitely
 alluring, but I know so many developers who actually ended up calling it a daunting task
instead. My experience is that designing a general grid helper is a hard job because it would
invariably result in an intricate sequence of calls and parameters. Here’s a possible structure
of such a helper. (It was largely inspired by the Telerik’s ASP.NET MVC Extensions available
at http://telerikaspnetmvc.codeplex.com).

<%= Html.Grid<Order>(Model)

 .Name("Grid")

 .Columns(columns =>

 {

 columns.Add(o => o.OrderID).Width(100);

 columns.Add(o => o.Customer.ContactName).Width(200);

 columns.Add(o => o.ShipAddress);

 columns.Add(o => o.OrderDate).Format("{0:MM/dd/yyyy}").Width(120);

 })

 .Scrollable(scrolling => scrolling.Enabled((bool) ViewData["scrolling"]))

 .Sortable(sorting => sorting.Enabled((bool) ViewData["sorting"]))

 .Pageable(paging => paging.Enabled((bool) ViewData["paging"]))

 .Filterable(filtering => filtering.Enabled((bool) ViewData["filtering"]))

%>

 Chapter 5 Inside Views 267

While building a general-purpose grid helper may be an overwhelming task, writing a quick
one that serves the need of a module or a project is much easier.

When considering a grid of data to display in a Web view, there’s a strictly related aspect that
you can hardly avoid: paging.

Adding Paging Support
In Web Forms, you often use rich server controls that provide paging as an embedded
 feature. It should be noted, though, that paging is standalone functionality. All you need is
a piece of UI that provide links for the user to move between pages. When the user clicks,
the control just navigates away from the current page to another as referenced in the link.
Here’s a sample Pager HTML helper.

public static MvcHtmlString Pager(this HtmlHelper helper,

 string name,

 int count,

 int pageSize,

 string baseUrl,

 int pageIndex,

 object htmlAttributes)

{

 // Convert from object to dictionary

 var dict = (IDictionary<string, object>)new RouteValueDictionary(htmlAttributes);

 // Calculate number of links to render

 int numOfPages = count/pageSize;

 if (count % pageSize > 0)

 numOfPages++;

 // Build the inner part of the pager bar

 var pagerRowBuilder = new StringBuilder("<tr>");

 for (int i = 1; i <= numOfPages; i++)

 {

 var formatNormal = "Page {1}";

 var formatSelected = "Page {0}";

 var content = String.Empty;

 var cssClass = String.Empty;

 if (i==pageIndex)

 {

 content = String.Format(formatSelected, i);

 cssClass = "selectedPage";

 }

 else

 {

 content = String.Format(formatNormal, baseUrl, i);

 }

 pagerRowBuilder.AppendFormat("<td class='{0}'>{1}</td>", cssClass, content);

 }

 pagerRowBuilder.Append("</tr>");

268 Part II The Core of ASP.NET MVC

 // Build the pager bar

 var pager = new TagBuilder("table");

 pager.MergeAttributes(dict);

 pager.MergeAttribute("cellspacing", "0");

 pager.MergeAttribute("cellpadding", "2");

 pager.MergeAttribute("border", "0");

 pager.GenerateId(name);

 pager.InnerHtml = pagerRowBuilder.ToString();

 return MvcHtmlString.Create(pager.ToString());

}

The pager is rendered as a single-row table (just an arbitrary choice here) with one cell for
each page. (See Figure 5-13.)

FIGuRE 5-13 A pageable grid of data.

In the example, each link in the pager bar points to a URL in the form of {controller}/ {action}/
{customer ID}. To make it easier for the controller method to process the request of a new
page (which would be a GET request), it is preferable to distinguish between when the Index
action is requested over a POST (such as when you select from the list) and over a GET
(such as when you pick up a new page). In addition, the view model object must be enriched
with information such as the page size and the current page index.

public partial class HomeController : Controller

{

 private const int GridPageSize = 3;

 [HttpPost]

 public ActionResult Index(string ddCustomerList)

 {

 string id = ddCustomerList;

 // Get data from DB or cache

 var model = LoadSalesDataFromCache(id) ?? LoadSalesDataFromSource(id);

 // Complete the view model

 model.PageIndex = 1;

 model.PageSize = GridPageSize;

 return View(model);

 }

 Chapter 5 Inside Views 269

 [HttpGet]

 public ActionResult Index(string id, int? pageIndex)

 {

 var index = pageIndex.HasValue ? pageIndex.Value : 1;

 index = index <1 ?1 :index;

 // Get data from DB or cache

 var model = LoadSalesDataFromCache(id) ?? LoadSalesDataFromSource(id);

 // Complete the view model

 model.PageIndex = index;

 model.PageSize = GridPageSize;

 return View(model);

 }

}

Writing the pager may take a while but then it is a largely reusable (or easily adaptable)
 component for any ASP.NET MVC views you may have. The final touch is ensuring that the
grid lists an appropriate number of lines:

<% foreach (Order order in ViewData.Model.Orders

 .Skip(ViewData.Model.PageSize*(ViewData.Model.PageIndex-1))

 .Take(ViewData.Model.PageSize))

 { %>

.
 .
 .

<% } %>

Adding AJAX Capabilities
The view in Figure 5-13 works perfectly but requires a refresh for each GET or POST.
What about some AJAX capabilities? In Chapter 9, we’ll get into the details of AJAX in
ASP.NET MVC; however, here’s a brief preview. In ASP.NET MVC, AJAX is implemented
around the HTML Message pattern and the final behavior is not much different from the
 partial rendering you know from Web Forms programming.

The idea is having the form to post its request asynchronously to receive a partial
view—that is a chunk of HTML as typically produced by a user control. Likewise,
links in the pager bar will place their requests to get similar chunks of markup. In
my implementation, I decided to maintain an Index method in the controller to
 allow for a classic landing into the view from other points in the application. A new
 method—GetPage—will handle instead AJAX requests to accommodate for paging and
changes of selection. The implementation of GetPage is identical to the method Index
discussed earlier. (Having two distinct methods makes it easier to distinguish between
 rendering the page after a landing and refreshing portions of the page subsequent to
 actions within the page. In this way, we split the necessary complexity over three methods
instead of just one.

270 Part II The Core of ASP.NET MVC

public partial class HomeController : Controller

{

 private const int GridPageSize = 3;

 public ActionResult Index(string ddCustomerList)

 {

 string id = ddCustomerList;

 var model = LoadSalesDataFromCache(id) ?? LoadSalesDataFromSource(id);

 return View(model);

 }

 [HttpPost]

 public ActionResult GetPage(string ddCustomerList)

 {

 string id = ddCustomerList;

 var model = LoadSalesDataFromCache(id) ?? LoadSalesDataFromSource(id);

 // Complete the view model

 model.PageIndex = 1;

 model.PageSize = GridPageSize;

 return PartialView("OrdersViewByPage", model);

 }

 [HttpGet]

 public ActionResult GetPage(string id, int? pageIndex)

 {

 var index = pageIndex.HasValue ? pageIndex.Value : 1;

 index = index <1 ?1 :index;

 var model = LoadSalesDataFromCache(id) ?? LoadSalesDataFromSource(id);

 // Complete the view model

 model.PageIndex = index;

 model.PageSize = GridPageSize;

 return PartialView("OrdersViewByPage", model);

 }

}

Now the PartialView method renders out a user control named OrdersViewByPage. The user
 controls takes out from the original view the portion that will be refreshed over AJAX actions.
Here’s the Index view and the user control.

<!-- Index.aspx -->

<% using (Ajax.BeginForm("GetPage", "Home",

 new AjaxOptions { LoadingElementId = "lblWait", UpdateTargetId = "pnlOrdersView" }))

 {%>

 <%= Html.DropDownList("ddCustomerList",

 new SelectList(ViewData.Model.Customers, "CustomerID", "CompanyName")) %>

 <input type="submit" value="Load" />

 Please, wait ...

 <hr />

 <div id="pnlOrdersView" />

<% } %>

<!-- OrdersViewByPage.ascx -->

<div id="pnlOrdersViewByPage">

 <%= Ajax.Pager("pager",

 Chapter 5 Inside Views 271

 ViewData.Model.Orders.Count,

 ViewData.Model.PageSize,

 ViewData.Model.SelectedCustomerId,

 "GetPage",

 "Home",

 "lblWait",

 "pnlOrdersViewByPage",

 ViewData.Model.PageIndex) %>

 <table id="gridOrders">

 <tr>

 <th scope="col">ID</th>

 <th scope="col">Customer</th>

 <th scope="col">Order issued</th>

 </tr>

 <% foreach (Order order in ViewData.Model.Orders

 .Skip(ViewData.Model.PageSize*(ViewData.Model.PageIndex-1))

 .Take(ViewData.Model.PageSize))

 {%>

 <tr title="<%= order.Customer.Address %>">

 <td><%= order.OrderID %></td>

 <td><%= order.Customer.CompanyName %></td>

 <td><%= String.Format("{0:dd MMM yy}", order.OrderDate) %></td>

 </tr>

 <% } %>

 </table>

 <p>Total orders: <%= ViewData.Model.Orders.Count %></p>

</div>

The pager must be updated too so that it can emit AJAX, script-driven links instead of plain
 browser-led links. You can certainly use jQuery to emit links that point to an appropriate
 action. In this example, however, I’m using the Ajax.ActionLink helper to generate
 script-based links. The ActionLink helper, though, requires that you specify the target in terms
of action and controller. In addition, the pager must receive information about the ID of the
customer you’re paging through. You can pass the ID of the markup section to use as the
progress bar and, of course, the ID of the area to be updated with the results.

public static MvcHtmlString Pager(this AjaxHelper helper,

 string name,

 int count,

 int pageSize,

 string itemId,

 string action,

 string controllerName,

 string waitLabel,

 string panelToUpdate,

 int pageIndex,

 object htmlAttributes)

{

 // Convert from object to dictionary

 var dict = (IDictionary<string, object>)new RouteValueDictionary(htmlAttributes);

 // Create a drop-down list with selectable pages

 int numOfPages = count/pageSize;

 if (count % pageSize > 0)

 numOfPages++;

272 Part II The Core of ASP.NET MVC

 // Build the inner part of the pager bar

 var pagerRowBuilder = new StringBuilder("<tr>");

 for (int i = 1; i <= numOfPages; i++)

 {

 var formatSelected = "Page {0}";

 var content = String.Empty;

 var cssClass = String.Empty;

 if (i==pageIndex)

 {

 content = String.Format(formatSelected, i);

 cssClass = "selectedPage";

 }

 else

 {

 var temp = helper.ActionLink(

 String.Format("Page {0}", i),

 action,

 controllerName,

 new { pageIndex = i, id = itemId },

 new AjaxOptions() {

 HttpMethod = "GET",

 LoadingElementId = waitLabel,

 UpdateTargetId = panelToUpdate

 });

 content = temp.ToHtmlString();

 }

 pagerRowBuilder.AppendFormat("<td class='{0}'>{1}</td>", cssClass, content);

 }

 pagerRowBuilder.Append("</tr>");

 // Build the pager bar

 var pager = new TagBuilder("table");

 pager.MergeAttributes(dict);

 pager.MergeAttribute("cellspacing", "0");

 pager.MergeAttribute("cellpadding", "2");

 pager.MergeAttribute("border", "0");

 pager.GenerateId(name);

 pager.InnerHtml = pagerRowBuilder.ToString();

 return MvcHtmlString.Create(pager.ToString());

}

More details about this example can be found in the source code that comes with the book
and that you can download from . . .

Note HTML helpers are the closest you get to server controls in ASP.NET MVC. HTML helpers,
however, don’t provide a declarative model. Is it possible to write components that are both
 declarative and tailor-made for the ASP.NET MVC request life cycle? That possibility doesn’t exist
yet. In ASP.NET MVC 2, you get HTML templated helpers and can consider writing your own
 templated helpers to express complex logic and layout in a programmatic way. Beyond that, if
you still prefer a truly declarative and programmatic approach, you probably need to (try to) build
an entirely new family of controls that act as plain renderers of HTML while outputting route-
based links and AJAX endpoints. Nothing of the kind from Microsoft or vendors is in sight as yet.

 Chapter 5 Inside Views 273

Testing a View
When it comes to testing in the context of ASP.NET MVC, you find out that most examples
focus on controllers. So what about views?

In ASP.NET MVC, a good question entails whether you really need to test the view or not.
A fundamental trait of automated tests is speed of execution. To be effective, a test has to
be simple, quick, and repeatable. Furthermore, it’s preferable that the test runs in isolation
 without bindings to the Web server.

Being a plain class, a controller can certainly be tested in line with all these conditions.
The same can’t be said for a Web view. This is the primary reason why developers tend
to move most code and logic into the controller, keeping the view as simple as possible.
An extremely simple view, in fact, might not need automated testing. In this regard,
 therefore, manual tests aimed at ensuring that bound data displays correctly, and that posted
data flow out correctly, should be more than enough.

Testing the view has three different but related aspects: testing the HTML that makes up the
view, testing the behavior of the view, and testing form data posted from the view.

Testing the HTML in the View
In ASP.NET MVC, the HTML for the view is generated by the controller when it invokes the
View method. If you consider the structure of the page trivial or just static, it might suffice
that you ensure the correct data is passed on to the view. This can be easily achieved through
tests on the controller. (I briefly hinted at this in Chapter 4, and I’ll say even more about it in
Chapter 10.)

If the structure of the page might differ depending on run-time conditions or parameters,
you probably need to look around for some tools that help you test the front end of a
Web application.

Testing the Behavior of the View
Testing the front end of a Web application goes beyond classic unit testing and requires ad
hoc tools. In this regard, ASP.NET MVC is not much different from ASP.NET Web Forms, or
even from Java or PHP Web applications.

You need a tool that allows you to programmatically define a sequence of typical user
 actions and observe the resulting DOM tree. In other words, you want to test the layout
and content of the response when the user performs a given series of actions.

Such tools have recording features, and they keep track of user actions as they are performed
and store them as a reusable script to play back. Some tools also offer you the ability to edit
test scripts or write them from scratch. Here’s a sample test program written for one of the

274 Part II The Core of ASP.NET MVC

most popular of these front-end test tools—WatiN. The program tests the sample page we
discussed earlier with a drop-down list and a grid:

public class SampleViewTests

{

 private Process webServer;

 [TestInitialize]

 public void Setup()

 {

 webServer = new Process();

 webServer.StartInfo.FileName = "WebDev.WebServer.exe";

 string path = ...;

 webServer.StartInfo.Arguments = String.Format(

 "/port:8080 /path: {0}", path);

 webServer.Start();

 }

 [TestMethod]

 public void CheckIfNicknameIsNotUsed()

 {

 using (IE ie = new IE("http://localhost:8080/Samples/Datagrid"))

 {

 // Select a particular customer ID

 ie.SelectList("ddCustomerList").Option("1").Select();

 // Check the resulting HTML on first row, second cell

 Assert.AreEqual(

 "A Bike Store",

 ie.Table(Find.ById("gridOrders").TableRow[0].TableCells[1].InnerHtml));

 }

 }

 [TestCleanup]

 public void TearDown()

 {

 webServer.Kill();

 }

}

The testing tool triggers the local Web server and points it to the page of choice. Next, it
simulates some user actions and checks the resulting HTML.

Different tools might support a different syntax and might integrate with different
 environments and in different ways. However, the previous example gives you the gist of
what it means to test the front end.

Web UI testing tools can be integrated as extensions into browsers (for example, Firefox) but
they also offer an API for you to write test applications in C# or test harnesses using MSTest,
NUnit, or other test frameworks. Table 5-7 lists a few popular tools.

 Chapter 5 Inside Views 275

TABLE 5-7 Tools for testing a Web front end

Tools More information

ArtOfTest http://www.artoftest.com/home.aspx

Selenium http://seleniumhq.org

Visual Studio Team
System 2008

http://msdn.microsoft.com/en-us/library/cc678655.aspx

WatiN http://watin.sourceforge.net

Testing Posted Data
In ASP.NET MVC, testing controllers is relatively easy. However, each method you test is
 expected to receive a bunch of parameters, either through the signature or via mocked
ASP.NET intrinsic objects. Based on these values, the controller does its job and produces
other values to be consumed by the view.

In this way, you can ensure that the controller behaves well based on the data it receives.
How can you test that the view really passes in correct data? In other words, how can you
test posted data?

Sending automated POST requests to a URL is a feature that all the tools in Table 5-7
 support. They all let you fill in and post a form. However, in that case, at least, the local Web
server ffmust be up and running. Posting to test pages that do nothing but return a Boolean
answer (expected/unexpected) is a possible way to speed up things.

If you want to simply look at what is being transmitted, you can turn your attention
to tools such as Fiddler (http://www.fiddler2.com/fiddler2/) or HttpWatch
(http://www.httpwatch.com).

Summary
ASP.NET MVC doesn’t include anything that corresponds to a page—at least, as we’ve come
to know pages from ASP.NET Web Forms. ASP.NET MVC doesn’t match URLs to disk files;
 instead, it parses the URL to figure out the next requested action to take. The closest thing
to a page in an ASP.NET MVC application is the view.

A view is neatly separated from the controller. The controller performs any work, gets fresh
data for the next user’s view, and then passes the data on to the currently selected view
 engine. The view engine gets the data and a view name. The view name points to a template
whose location and syntax depends on the view engine.

276 Part II The Core of ASP.NET MVC

The view as invoked by the controller is, then, a template that is merged with data to
 produce HTML for the browser. ASP.NET MVC supplies a default view engine that recognizes
a syntax that is largely based on the ASPX markup of Web Forms. This allows you to employ
server controls in ASP.NET MVC views even though this certainly is not the ideal approach.
The development of the view can be made faster by using HTML helper components—static
methods that emit HTML based on parameters. Unlike server controls, HTML helpers are
simple and don’t implement any life cycle.

In this chapter, we first examined in detail what it takes to process a view and then focused
on development aspects, including using HTML helpers, templated helpers, localization,
server controls and, last but not least, testing a view.

In the next chapter, we’ll complete our look at the core of ASP.NET MVC by tackling the third
actor of the base MVC pattern—the model.

 277

Chapter 6

Inside Models
It does not matter how slowly you go, so long as you do not stop.

—Confucius

By default, the Microsoft Visual Studio standard project template for ASP.NET MVC
 applications includes a Models folder. If you look around for some guidance on how to use
it and information about its intended role, you quickly reach the conclusion that the Models
folder exists to store model classes. Fine, but which model is it? Or, more precisely, what’s
the intended definition of a “model”?

I don’t much like the Models folder. It’s not that I don’t want to have it around; more simply,
I find Models to be a misnomer for an otherwise useful folder. As I see things, ViewModels
would have been a much better name for the folder—and this is how I often rename the
folder in my own projects.

What is the point here? The change of a folder name doesn’t make an application run
 faster or make it easier to maintain. However, I’ve found out in a bunch of real-world
 projects that less experienced developers—or, regardless of the experience, developers
with a not-so-clear understanding of layered systems—tend to confuse view- specific,
 screen-bound models with business-oriented domain models. The folder named Models
seems to transmit the message that it is just the place where you need have your
 application’s domain model—the model with business entities such as Customer, Order,
Invoice, and so forth.

I agree with anyone who says that not every application needs a neat separation between
the object models used in the presentation and business layers. Nonetheless, two distinct
models exist, and coexist, in a typical layered Web solution. You might decide that for your
own purposes the two models nearly coincide, but you should always recognize the existence
of two distinct models that operate in two distinct layers.

In this chapter, I’ll first go through the differences between view-models and domain models,
and then I’ll drill down into how you can effectively design a model for the presentation
 layer and a model for the business layer. Finally, I’ll look into binding posted data into
 complex and rich data types for the controller to use. In doing so, I’ll discuss validation and
data member annotations.

278 Part II The Core of ASP.NET MVC

What’s the Model, Anyway?
As discussed in Chapter 3, “The MVC Pattern and Beyond,” the ASP.NET MVC framework
is clearly inspired by the Model2 pattern, regardless of the MVC signature in the name.
The Model2 pattern had been largely inspired by the original MVC pattern, and it was,
in fact, the result of adapting the MVC pattern to the Web scenario.

In the Model2 pattern, most of the work is taken care of by only two actors: the view and
the controller. The model is merely a way to represent the data being worked on in the view.
The controller orchestrates all operations: it receives posted data, performs any required
 action, selects the next view, and orders the selected view to render.

Where’s the model, then? What’s its intended meaning?

As I see things, the model in ASP.NET MVC is simply an abstraction for any data the controller
passes down to the view. This definition is perfectly in line with the definition of the “model
actor” that you might read about in the original MVC paper. The paper describes the model
as “the data being worked on in the view.”

With that said, let’s forget about the Models folder for now and start thinking logically about
the various faces of the MVC model you might meet in an ASP.NET MVC application. And, if
needed, add new folders to group any new classes and abstractions.

Note The default Visual Studio template for ASP.NET MVC 2 features a non-empty
Models folder that just contains a file named AccountModels.cs. This file relates to the login
 functionalities of the default template and defines a bunch of helper classes. Unless you find
out that the default support for login works for you—it may or may not—you can remove that
file from the folder and even rename or remove the folder itself. In a way, however, the content
of the Models folder in the default ASP.NET MVC 2 project brings up the idea that the folder is
 expected to contain view-specific data models that span over controllers and views.

How Many Types of Models Do You Know?
In ASP.NET MVC, the term “model” is used to mean three distinct things, as illustrated in
Figure 6-1:

n The representation of the data being posted to the controller

n The representation of the data being worked on in the view

n The representation of the domain-specific entities operating in the business tier

In relatively simple scenarios (like many of the Web applications you are commonly asked
to write), it might be acceptable that a single set of classes—that is, a unique model—is
 employed. However, this is only a simplified design that is safe to choose when it doesn’t
 produce any loss of generality.

 Chapter 6 Inside Models 279

Client Controller

View

View
Model
(recommended)

Posted Data
Model
(often optional)

Middle tier

Domain
Model

InsertViewModel
UpdateViewModel
QueryViewModel

UpdateCustomerData
InsertCustomerData
QueryCustomerData

Customer
Order

Invoice
Product

1

3

2

FIGuRE 6-1 Three flavors of a model in ASP.NET MVC

Data Posted to the Controller
As discussed in Chapter 2, “The Runtime Environment,” ASP.NET MVC works on top of the
same runtime environment as classic ASP.NET. This means that any requests for an ASP.NET
MVC endpoint are routed through the ASP.NET pipeline. Any posted data is packaged into
a POST request.

As the preferred ASP.NET MVC endpoint, a controller’s method can easily grab any posted data
from the collections available through the Request object—especially Form and QueryString.

These collections, though, expose just the raw, string-based data. In classic ASP.NET, the
 default page HTTP handler forwards this data to target server controls and lets server
 controls parse and validate the data. The runtime shell of ASP.NET MVC attempts to model
any incoming data to strongly typed variables.

In particular, the runtime environment uses some conventions to match the key names
of posted values to formal parameters in the target controller’s method. If the controller’s
method declares a complex type, a more sophisticated binding mechanism is triggered:

[AcceptVerbs(HttpVerbs.Post)]

public ActionResult Update(Customer customer)

{

.
 .
 .

}

280 Part II The Core of ASP.NET MVC

Known as model binding, this mechanism attempts to bind posted data to public members
of the declared type using the same name-based convention—a public member matched
to a posted key value. The mechanism is actually more sophisticated because it allows you to
customize the binding process, but that’s the basic idea.

In the example, it might happen that posted data is automatically bound to the Customer
argument.

So what’s the Customer type? It can definitely be the representation of a business entity as
well as an object modeled after the needs of the posting HTML form. More in general, it can
be a data container that grabs any incoming data and groups it in a way that is easier for the
controller to work with.

To be really picky, data types used as arguments of a controller action method belong to
an ad hoc object model—we can call it, the posted data object model—distinct from the
view-model and the business entity model, as in the following example:

[AcceptVerbs(HttpVerbs.Post)]

public ActionResult Update(UpdateCustomerData data)

{

.
 .
 .

}

The UpdateCustomerData class is an action-specific class that is used to grab any data
posted from the client. You use this class in lieu of the real domain entity—for example,
Customer—and isolate in it any validation logic and any logic that determines default values
for unspecified properties.

Note To avoid an always nefarious proliferation of classes, you will likely decide to ignore this
type of model, discard the idea of using any such UpdateCustomerData class, and resort to using
domain objects (for example, Customer) to capture posted data, a sequence of primitive data
types, the FormCollection object, or even the Request object. I’ll return to the pros and cons of
direct domain object binding later.

Data Worked On in the View
After the controller’s method has done its job, it has likely grabbed, or produced, some data
to show in the view. To maintain a clean separation of concerns, the controller is expected to
calculate and retrieve any data required by the view. In other words, the view is expected to
be as passive as possible and just display what it receives.

In doing its work, the controller method typically interacts with the application’s middle tier,
running queries, executing workflows, or perhaps invoking service methods. Depending
on how you design the business layer, the controller—which logically belongs to the
 presentation layer—receives data in a format that might not be designed for the needs
of the next view to display.

 Chapter 6 Inside Models 281

Most of the time, some extra work is required before the data can be passed to the view
and subsequently served to the end user. Usually, this extra work entails applying ad hoc
formatting, fragmenting collections to make them fit into the UI elements, and populating
UI list elements with options for the user to choose. This logic doesn’t belong to the business
tier and subsequently might not be reflected by the objects the controller receives from the
middle tier.

It turns out that a new layer of data types must be arranged for the specific needs of the
view. These objects are referred to as view-model classes, and the controller passes their
i nstances down to the view:

[AcceptVerbs(HttpVerbs.Post)]

public ActionResult Index(int? productId)

{

 // Action

 Product product = _service.GetProductById(productId);

 // Prepare for rendering

 var model = new ProductViewModel();

 . .
 .

 return View("Product", model);

}

In ASP.NET MVC, you often use the word “model” to refer to strongly typed objects you pass
to the view, as in the preceding example. The ProductViewModel class you see in the listing is
a view-bound data type that carries all the values being used by the Product view (and only
these values).

Important Do you really need to have an xxxViewModel class for each view you happen to
have and for each use-case? Yes, in an ideal scenario this is just what you end up with. But we
live in an imperfect world. So it is acceptable that you sacrifice the purity of design in the name
of pragmatism and, when this is suitable, pass on to the UI the same data objects you have
 received from the middle tier. This is your own choice though, consciously made for the sake of
the project. It should not be sold as, or simply mistaken for, a best practice. Finally, be aware that
passing direct entities is hardly what you want, even with moderately complex views. In fact, the
needs of the view might require data to be assembled from various entities, which forces you to
create ad hoc data transfer classes.

Domain-Specific Entities
In the middle tier, you must have a coherent representation of the data your application
 processes. This data is expected to describe the entities that populate the domain of the
problem your application is called to solve. For example, an application that deals with
a trading company will likely have entities such as Customer, Order, and Invoice.

282 Part II The Core of ASP.NET MVC

There might be various ways of implementing domain entities, and they all depend on how
you envision the business tier of the application. If you opt for the Domain Model pattern,
for instance, you end up with an object model that is completely ignorant of persistence
and that focuses on business processes rather than application-specific operations such as
database I/O, logging, and security. If you opt for an Active Record pattern, you work with
an object model in which entities model closely the underlying tables and each object knows
how to load and save itself from and to the database. Finally, if you feel comfortable with
the typed DataSets, you opt for the rules of the Table Module pattern and create business
 objects that encapsulate database tables.

In a Web application, data types defined in the application’s business tier typically rise up to the
presentation layer, where they can be consumed by controllers. So, for example, if your entity
data model relies on a Customer object, the same Customer object might become visible to the
controller; and from there, it can be passed on to the view to arrange a Web page. On the way
back, the content of the form might be headed back to a Customer object in the context of
a controller action method and, from there, down to the business tier to close the circle.

In the end, an ASP.NET MVC application has three different types of models. They all serve
a specific and distinct purpose. To a large extent, all these classes can correctly be considered
part of the model. But you should be clear about what the real differences are.

With all that said, what should you have in the Models folder?

The Models Folder
Too many demos of ASP.NET MVC applications have the presenter create a LINQ-to-SQL
model or an Entity Framework model to start with. The presenter then frequently refers to
these models as the “model” of the application. Some presenters even sometimes copy the
DBML or EDMX files into the Models folder.

As an architect or developer, you need to understand that, in general, there exist three
 distinct types of model, each playing a specific role, as you just saw.

Using three distinct sets of classes is the only proven way to deal with particularly complex
applications where the needs of the user interface don’t match nicely with the representation
of the data you have in the middle tier. This model mismatch might result from questionable
design choices, from an excessive requirements churn that constrained the design or, more
likely, from nonfunctional requirements such as the need to interface with a legacy system.

One-Model-Fits-All: Approach or Antipattern?
Not all applications are so complex as to require three distinct models—for posted data, view
data, and business logic. In one common scenario, you have a single model largely inferred

 Chapter 6 Inside Models 283

from the database and use that everywhere—in the controller as well as in the view. Let’s
 refer to these objects as domain objects or domain entities.

If using a single model everywhere is an approach that works for you, by all means go for it.
It’s simple and effective. Furthermore, the years of experience captured by Ruby-on-Rails and
Castle MonoRail developers prove that this approach is just right for most Web applications.
So why not use it in ASP.NET MVC?

On the other hand, as a conscientious developer or architect, you should be aware that by
opting for a single model of data you are deliberately simplifying the design. As long as it
remains simple and doesn’t create issues of any sort, you’re OK. Should it, at some point,
 become simplistic or ineffective, you’ll be in serious trouble.

My Model Is the Domain Model
If “model” for you means just the domain model, in any non-toy application you likely don’t
need the Models folder at all. If your model is expected to contain a representation of the
domain entities, chances are good that you’ll import these classes from an external assembly
or service, as in the sample project shown in Figure 6-2.

FIGuRE 6-2 The data model is imported from an external class library.

In a similar situation, the Models folder is just empty and you can safely delete it. The only
reason for keeping the Models folder is if you are embedding the domain entities in the
Web application—it’s doable, but not recommended because doing so makes it difficult to
keep the project clean and manageable.

Now let’s examine the pros and cons of having a single, business-oriented model.

284 Part II The Core of ASP.NET MVC

Posting Data to Domain Objects
Every HTTP POST request that hits a Web application brings some data for the application
to process. This data travels in the body of the HTTP packet, and the ASP.NET runtime
environment then automatically maps this incoming data to a name/value dictionary—
usually, the Form collection exposed through the Request intrinsic object. In ASP.NET MVC,
any request—whether it’s GET or POST—is mapped to a controller action method. What
about the signature of the action method?

As you saw in Chapter 4, “Inside Controllers,” an action method is expected to return an
ActionResult object, but it can accept any sequence of input parameters. If the action method
is parameterless, you can resort only to the Request object to access posted data. If the
 action method signature instead contains parameters, the ASP.NET MVC runtime is smart
enough to try to match posted values to the names of those formal parameters. For example,
consider this controller method:

public ActionResult Find(int id)

{

.
 .
 .

}

The id parameter gets automatically initialized only if there’s a posted value with a matching
key name. Otherwise, it remains set to null and you can still retrieve any posted value using
the Request object.

What if the action method declares a complex type as in the following example?

public ActionResult Insert(Customer customer)

{

.
 .
 .

}

Who takes care of filling up the properties of the Customer parameter? The ASP.NET MVC
runtime loops through the public properties of the type specified in the controller method
signature and attempts to match the names of those public properties to the key of posted
values. For any match found, the corresponding property on the complex type is set.

Issues with Direct Domain Object Binding
This approach is easy to code and it certainly works. However, there’s a drawback you
might want to consider. Customer is directly bound to any data being posted over the wire.
Any posted value that has a matching key can find its way into the instance of Customer
 being processed by the controller. This approach can even result in a security hole
if a made-to-measure, malicious post is prepared and run.

 Chapter 6 Inside Models 285

To avoid that, the only serious approach you can take is changing the signature of the
 controller method and removing the entity object from there. Here are a couple of
 alternatives for when you have multiple values to move around:

public ActionResult Insert(FormCollection formData);

{

 // Similar to using Request.Form but easier to test

}

public ActionResult Insert(string company, string contact, ...);

{

 // List all properties you want to set. Still

 // requires matching between posted values and parameter names.

}

public ActionResult Insert(InsertCustomerData data);

{

 // List all properties you want to set. Still

 // requires matching between posted values and parameter names.

}

In addition, it’s possible that not all values posted from the view have a match with properties
in Customer; therefore, some properties might stay unassigned. This possibility has to be
verified before the controller proceeds with updates.

Finally, consider that, in any case, you are forced to have matches between property names
(or parameter names) and posted values. In other words, the view is not really independent
from the model.

Note The way in which posted data is processed by the ASP.NET MVC runtime is controlled by
a special type of component—the model binder. I’ll get to model binders in a moment.

By writing a custom model binder, you can work around some of the issues mentioned. In
 particular, you can force security checks and avoid arbitrary and malicious data from being
passed, and you can ensure that unmatched properties have a default value and even validate
data before they are stored in the entity object.

Passing Data to the View
After having processed any input data that comes over the POST command, the controller
method is ready to render the view. Because the view is expected to be as simple as possible,
the controller will pass it any single piece of data that needs to be displayed.

In a realistic scenario, the data for the view probably won’t come from just one entity object.
In some simple cases, all you want to do is display (for editing or reporting purposes),
say, a Customer object. In this case, all is fine and the View method just receives a Customer
instance for a strongly typed view.

286 Part II The Core of ASP.NET MVC

However, when the view is not tailor-made for a particular entity, you are left with the
 problem of aggregating data together. A common situation is when you need to edit
a Customer object but also need to provide a list of countries for the user to select.
You actually have a Customer object to pass, plus something else.

You can opt for creating a few entries in the ViewData collection, or you can opt for
 arranging a custom type that represents the model for the view.

Let’s now examine more closely the options you have for modeling the domain model and
the view-model and how cross-cutting concerns such as error handling and validation apply
to both types of models.

Domain Model and View-Model
Nearly all applications, and not just ASP.NET MVC applications, need a domain model that
represents, from the application’s perspective, the data that the application is supposed
to handle. In addition, a view-model is almost as necessary to provide the engine that
 produces the view with specific information that is just right, in terms of quantity, quality,
and formatting.

The two models are hardly disjointed, but their overlapping is hardly total, either. When
their overlapping is nearly total, it might make sense that you consider getting rid of the
 view-model and perhaps resort to the ViewData collection for any extra data that is required.

The Models folder can be used to contain files related to the domain model (for example,
EDMX files if you use Entity Framework, or DBML files if you opted for LINQ-to-SQL),
but it can also be used to contain any classes you happen to have in your view-model.
The structure of the Models folder is a detail that doesn’t really affect the design of the
 application. From a design perspective, the only thing that really matters is your awareness
that the domain model and view-model are distinct things.

Business Object Modeling
Regardless of what seems to be implied by the term Models folder, ASP.NET MVC doesn’t
mandate any specific data technology or approach for building a data model. You can use
your existing ADO.NET data access layer and be happy. Likewise, you can choose the dazzling
approach of LINQ-to-SQL and wed the power of designers and autogenerated code with an
object-based vision of your data. If you need more, you can opt for a fully fledged Object/
Relational Mapper (O/RM) framework, such as Entity Framework, NHibernate, LLBLGen Pro,
Subsonic, or perhaps Castle Active Record.

When it comes to designing a business data model, a lot of pattern names usually show up in
discussions—Domain Model, Active Record, Table Module, but also Repository, Unit of Work,

 Chapter 6 Inside Models 287

and Identity Map. You have to be careful in your analysis to separate the chaff from the wheat
and distinguish between patterns for business data modeling and patterns for persistence.

The Model and Persistence
A business data model is a model that an application uses to represent the data it works with.
The reference here is to business data rather than data used to populate a view or to trigger
a controller or service method.

You can organize your business data model according to a number of patterns, but essentially
it boils down to choosing between a table-oriented approach and an object-oriented
approach. In the final analysis, the point is not whether you use objects or not, but how
you model your objects and define their relationship to the database, their expressivity,
the fidelity with which they model the problem’s domain, and their flexibility in supporting
changes. An object model is a collection of classes and often looks similar to the database.
On the other hand, it has to act as the database as far as the application is concerned. The
patterns listed in Table 6-1 are commonly used to create a business data model.

TABLE 6-1 Patterns for devising a business data model

Pattern Description

Active Record Objects are closely modeled after database tables. Usually,
you have one object per table and one property per column.
Objects are responsible for their own persistence and have
very simple domain logic or no domain logic at all.

Domain Model Objects are aimed at providing a conceptual view of the
problem’s domain. They have no relationships with the
database and focus on the data owned and behavior to
offer. Objects have both properties and methods and are
not responsible for their own persistence. Objects are
uniquely responsible for actions related to their role and
domain logic.

Table Module Each object represents a database table and its entire
content. The class has nearly no properties and exposes a
method for each operation on the table, whether a query
or an update. This is the pattern behind typed DataSets and
table adapters in Visual Studio 2005 and later.

For more information on patterns for the business layer, you can refer to my book Microsoft
.NET: Architecting Applications for the Enterprise (Microsoft Press, 2008).

Once you have the model, though, you need to be able to persist it. With Table Module and
Active Record, persistence is embedded in the objects that form the model. More specifically,
if you opt for Table Module, your objects expose methods to do classic CRUD operations on
the table they represent, as well as any complex query. With Active Record, you have objects
that represent a row in a database table, so any CRUD operations recognize the current row.

288 Part II The Core of ASP.NET MVC

If you opt for a Domain Model approach instead, the whole theme of persistence is there
for you to deal with. Objects in a Domain Model scenario don’t know anything about
 persistence. For this reason, persistence has to be delegated to a distinct layer.

You can write this layer—often referred to as just the Data Access Layer (DAL)—yourself, but
it wouldn’t be much fun. A well-written DAL for a Domain Model is nearly the same as
an O/RM tool. So why not use one of the existing O/RM tools?

O/RM tools such as NHibernate and LLBLGen Pro take your own classes and follow your
 instructions as to how to map their properties to database columns. Other tools such as
Entity Framework force you to create both the model and the mappings through the facilities
embedded in Visual Studio.

O/RM tools usually offer a gateway object to orchestrate operations. This object (Session in
NHibernate, ObjectContext in Entity Framework) implements a number of persistence-specific
patterns, such as Identity Map and Unit of Work. (So these patterns are of no direct interest
when you focus on business data modeling.)

Finally, for testability you should try to wrap access to the DAL via the outermost layer of
code that corresponds to the Repository pattern. The Repository pattern is merely a wrapper
through which common data access operations are exposed. Often, you have a repository for
each (significant) object in the domain model. Here’s an example:

public interface ICustomerRepository

{

 IList<Customer> GetAll();

 Customer GetById(short id);

 IList<Customer> GetByCriteria(Predicate<Customer> func);

 void Add(Customer customer);

 void Delete(Customer customer);

 void Delete(int id);

 void Save(Customer customer);

 IList<Orders> GetOrdersForCustomer(Customer customer);

}

The Repository pattern is not a way to model your data; it is simply a way to model your Data
Access Layer.

Abstracting Domain Entities to a Model
For many years, the most natural way to create models was to have them mirror the physical
structure of the database. You have a Customers table? Then you need to have a Customer
object. You have a foreign key to an Orders table? Then you have an Orders collection.
In this way, the model grows out of the database, offers a thin layer of abstraction from the
 database details, and remains tightly coupled to the database. Is this wrong?

 Chapter 6 Inside Models 289

No, it’s not wrong, but this approach might be inappropriate in some cases. It doesn’t take
you in the wrong direction, but it might make it harder for you to achieve your goals. Let’s
explore another approach that is not table oriented.

If you consider the creation of an abstract model that includes classes such as the entities
you recognize in the problem’s domain, you’ll realize the model grows out of the domain.
The model abstracts your code from database details, and it is loosely coupled to the
 database. A domain-based model doesn’t necessarily take you the right way, but it might
make it easier for you to achieve your goals.

The purpose of dealing with an object model that has no direct relationship to the database
is to pursue an old dream of many developers and architects: It will let the model evolve
 independently from the database. It will let you add classes and relationships as needed
without having to come to an agreement with the database guys.

(Some companies have very strict IT departments that require you to submit a form for any
minimal change made to any table hosted on the company’s servers. Imagine how hard it
could be to adapt the database for all the changes you might need in development and
maintenance.)

The Domain Model pattern applies the model-first approach: it first creates the model and
then maps it to the database. Which tools would you use for creating a business data model
using the Domain Model pattern?

Entity Framework 4 lets you create the model using a Visual Studio 2010 designer.
(See Figure 6-3.)

FIGuRE 6-3 The Entity Framework designer in action

290 Part II The Core of ASP.NET MVC

When you are done with the abstract model, it creates the source code of the classes for you.
You can choose among a few different generators—standard, POCO (plain-old C# objects),
and self-tracking objects. You should also keep entity classes separated from the data context
class. The data context class (inherited from ObjectContext) is technically part of the DAL,
whereas entities are part of your domain model and, therefore, part of the business layer.

You can also create the model as a class library of plain C# classes and persist them to the
database using NHibernate file mappings. In doing so, you also leverage the NHibernate
Data Access Layer for any CRUD operations.

Note The expression “Domain Model” has several meanings you should be aware of before you
start using the term. Although it can be used to signify an object model created after a specific
domain (and not to represent a physical database), it is sometimes assigned a more specific
meaning partly taken from the Domain-Driven Design (DDD) methodology. According to this
methodology, a domain model is a special flavor of a self-contained object model in which
classes have no dependencies on outside types, are not forced to implement interfaces, and
feature ad hoc constructors. In this model, everything is a class and primitive types are often
replaced with ad hoc value types.

The Active Record Pattern
The Active Record pattern is simpler in some ways than the Domain Model pattern, and it
requires much less up-front planning. With Active Record, you get a collection of classes that
closely model the tables in an existing database. Most of the time, you have a one-to-one
correspondence between classes and tables and between class properties and table columns.

Each class essentially represents a record in a database table: the classes usually have instance
methods that act on the represented record and perform common operations such as save
and delete. In addition, a class might have some static methods to load an object from
a database record and perform some rich queries involving all records.

Classes in an Active Record model have methods, but these methods are mostly doing CRUD
operations. There’s nearly no domain logic in the classes of an Active Record model, even
though nothing prevents you from adding that.

An aspect that makes Active Record so attractive to developers is its extreme simplicity
and elegance and, just as significantly, the fact that in spite of its simplicity it works
surprisingly well for a many Web applications—even fairly large Web applications. I wouldn’t
be exaggerating to say that the Active Record model is especially popular among Web
developers and less so among Windows developers.

Beyond the simplicity and elegance of the model, available tools contribute significantly
to make Active Record such a popular choice. Which tool should you use to implement an
Active Record model?

 Chapter 6 Inside Models 291

LINQ-to-SQL is definitely an option. Fully integrated in Visual Studio 2008 and later, LINQ-to-
SQL allows you to connect to a database and infer a model from there. As a developer, your
classes become available in a matter of seconds at the end of a simple wizard. In addition,
your classes can be re-created at any time as you make changes, if any, to the database.
In terms of persistence, LINQ-to-SQL is not really a canonical Active Record model because
it moves persistence to its internal DAL—the data context. LINQ-to-SQL incorporates
a persistence engine that makes it look like a simple but effective O/RM tool with full support
for advanced persistence patterns such as Identity Map and especially Unit of Work.

Castle Active Record is another framework that has been around for a few years and that
offers a canonical implementation of the Active Record pattern. Finally, an emerging
 framework for Active Record modeling is Subsonic. (See http://www.subsonicproject.com.)

Unlike Castle Active Record, Subsonic can generate classes for you but does so in a way that
is more flexible than in LINQ-to-SQL: it uses T4 templates. A T4 template is a .tt text file that
Visual Studio 2008 and later can process and expand to a class. If you add a T4 template
to a Visual Studio project, it soon turns it into a working class. This mechanism offers you
an unprecedented level of flexibility because you can modify the structure of the class from
the inside and not just extend it with partial classes as in LINQ-to-SQL, and it also removes
the burden of writing that you must do with Castle Active Record.

The following code shows some simple operations with a Subsonic model:

// Find a customer by ID

var customer = Customer.SingleOrDefault(c => c.CustomerID == 'ALFKI');

// Get a list of customers by country

var customers = Customer.Find(c => c.Country == 'USA');

// Delete a customer (fails if data integrity is violated)

Customer c = new Customer('ALFKI');

c.Destroy();

// Update/Insert a customer

Customer c = new Customer('ALFKI');

c.CompanyName = "...";

.
 .
 .

c.Save();

As you can see, queries are accomplished through static methods and lambda expressions,
whereas update operations occur via instance methods.

Adding Validation Logic to the Model
In addition to providing a faithful and persistent representation of the entities in the
problem’s domain, a business data model has to provide a way for developers to validate any
instance of data. In other words, there should be a way for the developer to know quickly
whether the state of the object is valid or not.

292 Part II The Core of ASP.NET MVC

There are various ways to add some validation logic to the model, and which options you
have depend on the data access technology you are using more than on the pattern of
choice. Let’s review a few common scenarios.

A General Approach
Adding validation logic to an object model consists of defining an interface common to all
classes in the model that can be queried to check whether a given instance is in a valid state
or not. Here’s the typical structure of a class that supports a validation layer:

public class MyRootDomainObject : ISupportValidation

{

 public virtual bool IsValid

 {

 get

 {

 try

 {

 return new ValidationResults().IsValid;

 }

 catch

 {

 return false;

 }

 }

 }

 ValidationResults ISupportValidation.Validate()

 {

 ValidationResults errors = new ValidationResults();

.
 .
 .

 return errors;

 }

}

Here is what the ISupportValidation interface might look like:

interface ISupportValidation

{

 bool IsValid { get; }

 ValidationResults Validate();

}

ValidationResults is the class in your validation layer responsible for reading and applying
validation rules. Validation rules can be defined in a number of ways, including using plain
code. However, the approach emerging today as the most popular is to use attributes on
properties.

 Chapter 6 Inside Models 293

The structure of MyRootDomainObject lends itself well to supporting validation attributes.
Here’s an example of a business entity that inherits from MyRootDomainObject and adds
some validation attributes:

public class Customer : MyRootDomainObject

{

 public Customer()

 {

.
 .
 .

 }

 [NotNullConstraint(Message="Customer ID cannot be null")]

 [LengthConstraint(5, 5, Message="Customer ID must be exactly 5 chars long")]

 public virtual string ID { get; set; }

.
 .
 .

}

The Validate method on the ISupportValidation interface simply goes through all attributes
for a given instance and checks their expressions against current values. Each attribute
 expresses a business rule. In the example, the ID property of the Customer class is set to be
non-null and exactly five characters long.

Where would you find these attributes? You can write them yourself (as it is assumed in the
preceding code snippet), or you can use analogous attributes defined in Microsoft Enterprise
Library.

The Validation Application Block
The Validation Application Block is one of the modules that form Microsoft Enterprise
Library. It lets you express business rules using attributes such as NotNullValidator,
StringLengthValidator, RelativeDateTimeValidator, RegexValidator, and a few others. It also
provides various facilities for you to validate the state of a given entity. Here’s the code you
are required to validate according to the rules set through attributes for the type Customer:

Validator validator = ValidationFactory.CreateValidator<Customer>();

ValidationResults results = validator.Validate(customer);

To incorporate the Validation Application Block in the MyRootDomainObject class, you need
to rewrite the Validate method on the ISupportValidation interface as shown here:

ValidationResults ISupportValidation.Validate()

{

 Validator validator = ValidationFactory.CreateValidator(this.GetType());

 ValidationResults results = validator.Validate(this);

 return results;

}

294 Part II The Core of ASP.NET MVC

By using attributes from Enterprise Library and a validation interface, you can endow all
classes in the object model with validation capabilities. Additionally, the ValidationResults
class is a collection of error messages about whatever went wrong. These elements ensure
that a business layer performing validation against domain objects will receive the detailed
information it needs to take the next steps.

public void Update(Customer customer)

{

 if (customer.IsValid())

 _customerRepository.Save(customer);

}

An approach based on attributes works if you can freely edit the classes in the model. This is
definitely possible if you develop the model yourself or if you can exercise some control on
it, as is the case with Subsonic. With LINQ-to-SQL or Entity Framework, instead, this gets a bit
problematic because the source code is autogenerated (and maintained) by Visual Studio. It
doesn’t mean you have to look around for another strategy; more simply you need to make
some adjustments.

Note In addition to supporting attributes to be manually added to properties on entity classes,
Enterprise Library also supports the concept of a rule set. A rule set is a collection of rules
expressed through built-in validators such as RangeValidator, StringLengthValidator, and the like.
A rule set has a name, and one or more rule sets can be applied programmatically to an object.
More interestingly, rules and rule sets can be defined in the configuration file without the need
to edit source files. This represents a powerful solution to add validation logic to LINQ-to-SQL
and Entity Framework models. For some reason, though, this perfectly legitimate and highly
effective solution is not achieving the same popularity as other options I’ll discuss in a moment.

Validation in an Entity Framework Scenario
To add validation to an Entity Framework object model, you resort to an approach that is
specific to the technology. When the object model is autogenerated, each property on an
entity class has a pair of extensibility methods, as shown here for a particular Title property:

public string Title

{

 get

 {

 return this._Title;

 }

 set

 {

 this.OnTitleChanging(value);

 this.ReportPropertyChanging("Title");

 this._Title = value;

 this.ReportPropertyChanged("Title");

 this.OnTitleChanged();

 }

}

 Chapter 6 Inside Models 295

private string _Title;

partial void OnTitleChanging(string value);

partial void OnTitleChanged();

Two partial methods are defined: OnTitleChanging and OnTitleChanged. More in general,
you’ll have an OnXxxChanging method invoked at the beginning of the property setter
and an OnXxxChanged method invoked at the end. A partial method is defined on a class,
but it is initially implemented as an empty method. Unless you give it code in an additional
partial class, the method is treated as a non-operation by the compiler and optimized away.
If instead you override the base method and provide specific code, that code gets invoked
where specified. In other words, for the sample Title property, the OnTitleChanging and
OnTitleChanged methods represent the entry and exit points, respectively, in the setter
method. These methods, but OnTitleChanging in particular, exist just to let you put your own
validation code in.

You start by adding a partial class for each entity you intend to validate and then provide an
implementation for any OnXxxChanging partial method you want. Here’s an example:

partial void OnTitleChanging(string value)

{

 // Your validation logic for the property here

 string proposedValue = value;

 if (String.IsNullOrEmpty(value))

 throw new ArgumentException();

}

If the validation fails, there’s not much else you can do other than have the code throw an
exception.

Important Overall, the classic approach to validation in Entity Framework is limiting, and it is
limiting for two good reasons. First, it forces you to throw an exception if something goes wrong.
Second, because it throws an exception, it stops at the first detected error and doesn’t offer
you a global vision of what’s wrong in the current state of the entity. I called this the “classic”
approach because it is the only one you can take without adding extra features or linking
external libraries. However, after you take the plunge into writing additional code, you can do
more and add a collection to each entity where you copy the results of failures and a method
to check them programmatically. It’s not really a lot of work, but it is probably useless today
because with Entity Framework 4 you have even better alternatives.

Implementing partial methods is only the most common strategy to add validation to Entity
Framework that works with any version of it. It is not the only option, however.

In the first version of Entity Framework that comes with the .NET Framework 3.5 Service
Pack 1, instead of relying on autogenerated classes that inherit from EntityObject, you can
implement the so-called IPOCO interfaces—IEntityWithChangeTracker for tracking changes,
IEntityWithKey for exposing the entity identity, and IEntityWithRelationships for entities with

296 Part II The Core of ASP.NET MVC

associations. In doing so, you gain total control over the source code of the classes and
can decorate them with any attribute you like, including the Microsoft Enterprise Library
attributes for validation.

If you stick to the standard code generator, instead, you can add attributes to entities only
by overwriting the designer-generated code. In this way, though, you’re subjected to the
possibility of losing all your changes if the designer is triggered again to update the model.
Microsoft Enterprise Library, however, offers the possibility to link validation attributes
through a rule set stored in the configuration file. This is a great opportunity that is not
advertised as well as it should be. It lets you wed the power of Entity Framework with the
flexibility of the Validation Application Block in Enterprise Library. More importantly, it
gives you a mechanism to check for the valid state of an object without having to incur
an exception to find it out.

Finally, in the newest version of Entity Framework, by choosing the POCO code generator
you make yourself entirely responsible for the source code of the classes and can add all
 attributes and extra code that suits you.

Note In LINQ-to-SQL, the only approaches are the ones that use partial methods and throw
exceptions for invalid states as well as the approach based on the Validation Application Block in
Enterprise Library, which requires having all attributes set in the configuration file.

Data Annotations
In the .NET Framework 4, you find a revamped and improved version of the data annotations
library in the System.ComponentModel.DataAnnotations assembly. Data annotations are a set
of attributes you can use to annotate public properties of any .NET class in a way that any
interested client code can read and consume.

Attributes fall in various categories: validation, display, and data modeling. Compared to the
validators in Enterprise Library, data annotations are definitely richer and more sophisticated.
Unfortunately, though, data annotations lack support for settings stored offline in a
configuration file. Here’s a brief example of some relevant validation attributes:

public class Customer

{

 [Required]

 [Range(5, 50)]

 public int CustomerId { get; set; }

 [Required(AllowEmptyStrings=false)]

 [StringLength(5)]

 [RegularExpression(@"^[a-zA-Z''-'\s]{1,40}$",

 ErrorMessage = "Special characters are not allowed in the company name.")]

 public String CompanyName { get; set; }

 Chapter 6 Inside Models 297

 [DataType(DataType.EmailAddress)]

 public String Contact { get; set; }

 [CustomValidation(typeof(SpecialValidation), "ValidateSalesPerson")]

 public String SalesPerson { get; set; }

 [Required]

 [DataType(DataType.Text)]

 public String Country { get; set; }

 [DataType(DataType.PhoneNumber)]

 public String Phone { get; set; }

 [EnumDataType(typeof(Fidelity))]

 [Range(5, 50)]

 public object Fidelity { get; set; }

}

The attributes are summarized in Table 6-2.

TABLE 6-2 Data annotation attributes for validation

Attribute Description

Required Checks whether a non-null value is assigned to the property.
It can be configured to fail if an empty string is assigned.

Range Checks whether the value falls in the specified range. It defaults
to numbers, but it can be configured to consider a range of dates, too.

StringLength Checks whether the string is longer than the specified value.

RegularExpression Checks whether the value matches the specified expression.

DataType Checks whether the value is of the specified type. Note that in this
regard the notion of a type is not that of a system type. It refers more
to a kind of data, such as text or a date, but it can also refer to something
more specific, such as an e-mail address, phone number, or URL.

CustomValidation Checks the value against the specified custom function.

EnumDataType Checks whether the value can be matched to any of the values in the
 specified enumerated type.

Each attribute can accept an error message expressed both as a plain string and as a resource
index. The framework provides a base class—ValidationAttribute—from which you can
create custom attributes to personalize the validation layer. Let’s have a look at a sample
EvenNumber attribute:

public class EvenNumberAttribute : ValidationAttribute

{

 // Whether the number is even and also a multiple of 4

 public bool MultipleOf4 { get; set; }

 public override bool IsValid(object value)

 {

 if (value == null)

 return true;

298 Part II The Core of ASP.NET MVC

 if (value % 2 > 0)

 return false;

 return true;

 }

}

Checking the state of an annotated object requires a bunch of code nearly identical to
 validators you’ve seen in action within Enterprise Library. Here’s an example:

Customer customer = new Customer { ... };

.
 .
 .

var results = new List<ValidationResult>();

var context = new ValidationContext(customer, null, null);

var isValid = Validator.TryValidateObject(customer, context, results);

Console.WriteLine("Results:");

foreach (ValidationResult r in results)

{

 Console.WriteLine("\t{0}", r.ErrorMessage);

}

The central object is Validator. Its TryValidateObject method gets an object and attempts to
validate all of its annotations. The results are accumulated into a ValidationResult collection.
Note that if no collection is provided, validation will stop at the first failure and an exception
will be thrown. The ValidationContext class describes the context in which a validation check
is performed. It groups together the instance to be checked, the service that can be used
to perform custom validation, and a dictionary of key/value pairs to make available to the
 service consumers.

Note In addition to validation attributes, data annotations include display attributes. These
attributes decorate the property with meta information for modules living in the presentation
layer. A couple of common attributes are Display and UIHint. The former indicates localizable
strings to be used to describe the value; the latter refers to a customized component responsible
for rendering the value. Note that the real task of interpreting display attributes is delegated
to presentation code that reads values in the attributes and organizes the user interface
accordingly. For example, in ASP.NET MVC an HTML helper can read these values and produce
an ad hoc HTML block.

Data Annotations and Entity Framework
As discussed earlier, you cannot always decorate properties in an Entity Framework or
a LINQ-to-SQL model with your own attributes. Microsoft Enterprise Library offers an
 interesting way out through its support for validation attributes in the configuration file.
What about data annotations, though? Data annotations don’t support any configuration
file, but offer an alternative mechanism to be bound to autogenerated partial classes—the
MetadataType attribute.

 Chapter 6 Inside Models 299

Let’s assume you have in the Entity Framework model a class named Customer. The source
code of that class has been generated in some way, and you don’t want to touch it because
you expect to resort to the designer’s help files a few more times. To add attribute-based
validation without taking the risk of losing all changes at the next update, do as follows:

[MetadataType(typeof(CustomerMetaData))]

public partial class Customer

{

 // No code here as the class is already

 // defined in the Entity Framework (or LINQ-to-SQL)

 // designer-generated files.

}

The MetadataType attribute indicates which type includes the meta information for the
type it is attached to. Looking at the preceding code snippet, the class CustomerMetaData
 contains the same public interface as Customer except that properties are decorated with
data annotation attributes. Here’s how:

public class CustomerMetaData

{

 [Required]

 [Range(5, 50)]

 public int CustomerId { get; set; }

 [Required(AllowEmptyStrings=false)]

 [StringLength(5)]

 [RegularExpression(@"^[a-zA-Z''-'\s]{1,40}$",

 ErrorMessage = "Special characters are not allowed in the company name.")]

 public String CompanyName { get; set; }

 [DataType(DataType.EmailAddress)]

 public String Contact { get; set; }

.
 .
 .

}

Note that annotations are processed only if an exact match is found between a meta type
property and a property on the annotated type.

Data for the View
When architecting ASP.NET MVC, the development team decided to offer two ways for
 developers to pass data around from the controller to the view. One is the notorious
ViewData dictionary, and one is the strongly typed view. Ultimately, you can achieve
the same results either way. However, this is not a good reason for considering the two
 approaches to be the same and choosing one based on the flip of a coin.

300 Part II The Core of ASP.NET MVC

Is ViewData Just for Dummies?
As you saw in Chapter 5, “Inside Views,” the ViewData dictionary is an untyped dictionary
that you use in much the same way as Session or Cache. So it is easy to use, propounds
a familiar programming model, and just works. It’s amazing that we sometimes complain
about having the option of using an untyped dictionary for passing data to the view when
an untyped dictionary is the only option available for caching data. Oddly, the following
code might appear in some controllers in one form or another:

public ActionResult Index()

{

.
 .
 .

 // Get data from the ASP.NET Cache

 var data = Cache["MyData"] as IList<Customer>;

 if (data == null)

 data = LoadFromSourceAndCache();

 // Prepare the view

 ViewData["MyData"] = data;

 // Return

 return View();

}

Using the Cache object (as architects) might send chills down our spine, whereas using
the ViewData object is more and more a source of outright terror. What’s wrong with the
ViewData dictionary?

In first place, the ViewData dictionary is an untyped dictionary that might require you to
cast any value to its right type for certain uses. (For data binding, for example, no cast is
required.) Second, it requires you to use a string to identify any piece of information you
add. Compared to the naming efforts of storing data in the ASP.NET global cache, this is
a minimal amount of work. As with Cache and Session, though, you have to match names
in the controller and in the view.

However, also in this case I find that dealing with ViewData item naming is easier than
solving the same issue with Cache. The reason is that the content of ViewData is set in the
controller to be used only in the invoked view. If you mistype a name, you don’t have to look
any further to find the problem and fix it.

This said, I prefer to avoid ViewData whenever I can and resort to strongly typed views.

Strongly Typed Views
From within a strongly typed view, you can access both the ViewData dictionary as a whole
and a very specific part of it—the Model property. The ViewData dictionary is not just

 Chapter 6 Inside Models 301

a standard .NET dictionary type—it is, instead, a brand-new ViewDataDictionary type that
extends a standard dictionary type just because of this new property:

public object Model {get; set;}

You can set this property explicitly from within the controller:

ViewData.Model = customers;

return View("Index");

You can also set the Model property implicitly by passing a data object to the View method,
as shown here:

return View("Index", customers);

The view receives a copy of the ViewData object created by the controller and accesses its
data using the expression ViewData.Model. The deal is all sealed in the fact that by creating
a strongly typed view—that is, a page class that inherits from ViewPage<TModel> instead of
ViewPage—you specify what is type TModel and create the property Model of type TModel
in the page class. Here’s an excerpt from the source code of the class ViewPage<TModel>:

public TModel Model { get; }

public ViewDataDictionary<TModel> ViewData { get; set; }

The bottom line is that a strongly typed view class allows you to use a classic property with
a verifiable name—ViewData.Model—to access the object model for the view. This results in
cleaner and less brittle code because no magic strings are still around.

Note If you are simply avoiding magic strings and taking advantage of IntelliSense as much as
possible, I suggest you take a look at http://aspnet.codeplex.com/wikipage?title=T4MVC. T4MVC
is a T4 template for ASP.NET MVC applications that creates strongly typed helpers based on
strings found in the controllers’ code. By using T4MVC, you can eliminate the use of literal strings
when referring to controllers, actions, and views. As a result, your ASP.NET MVC code is easier to
maintain and gives you IntelliSense support even in situations where you would never had any
otherwise.

The View-Model
What kind of object would you store in the Model property of the ViewData dictionary?
Does it have to be a domain entity object, an aggregate of domain objects, or something
completely different? To answer this question, some considerations must be made.

The Model property is expected to represent the model for the page—the whole collection
of data that the view will work on. This model is not necessarily a single object such as
Customer or Product. More often, you need to incorporate data from various sources and
objects. It is advisable that you reason in terms of a new object model—the view-model.

302 Part II The Core of ASP.NET MVC

The view-model is a collection of classes, each representing the set of data that a given view
will work on. Most likely, a view-model is related to the customer and the view. A possible
naming convention is the following: ControllerViewSuffix. Controller is the controller’s name
(for example, Home); View is the view’s name (for example, Index), and Suffix is a common
tag you want to add (for example, ViewModel). A sample name for a view-model object is
HomeIndexViewModel. It’s just a naming convention, so feel free to change it as it suits you.

In a simple case, here’s how you invoke a view using a view-model approach:

var model = new CustomerIndexViewModel();

model.Customers = customers;

return View("Index", model);

In this case, the view receives a collection of customers. The corresponding type for the view
page is ViewPage<CustomerIndexViewModel>. An equally valid solution is the following:

// The view page is ViewPage<IList<Customer>>

return View("Index", customers);

The view-model makes sense especially for pages that have a model. You might have to
display pages with a very scanty model—for example, a ThankYou page. In this case, if any
data has to be passed from the controller, you probably wouldn’t mind using a few simple
ViewData items.

View-Model Builders
If you follow the view-model approach thoroughly, you end up with a bunch of new classes
to create and maintain. Where do you store all these new classes? Here’s where that old
 acquaintance, the Models folder, comes back into play.

The Models folder is a good container for view-models. Actually, it is the only reason I would
keep the folder in an ASP.NET MVC project. And if you have other content that might fit
 under Models (for example, a DBML or EDMX entity model file), I suggest you consider
 creating distinct subfolders.

A view-model class is not a bad idea, and it is a particularly good idea when a view starts
 getting complex. For example, to edit a customer you might need data for the current
customer, but you might also need collections for populating drop-down lists and maybe
some extra values for UI elements that have to do with the user’s preferences. In short,
building a view-model can become a really long task. Should you keep this code in the
controller?

At the highest level, the responsibility of the controller is ensuring that a response for each
request is generated and sent to the browser. This responsibility expands in two main tasks:
producing raw data for the response, and ensuring that any raw data is then packaged into

 Chapter 6 Inside Models 303

a nice view. So any code you need to collect data for the view belongs to the controller;
 additionally, it’s just part of its job.

This said, you might want to consider keeping the controller class as lean as possible for the
sake of readability and to minimize the risk of adding extra responsibilities in the long run.
In this regard, it can be a good idea to take some code that relates to building a view-model
out of the controller and put it into separate helper classes that help build the view-model
object to be passed to the view for rendering. It’s just a suggestion, but it leads to taking into
account another, and a bit subtler, issue—the controller and data shared by multiple views.

Note When you are dealing with view-models, inevitably the need to write some boring
code shows up. The “boring” code is the code that simply copies a few properties between two
overlapping types. An example is when you create an object that is a subset of Customer or
another that aggregates data from Customer and data from Order. Recently, a tool that helps
in this regard has emerged. It is AutoMapper, which you can find more information about here:
http://automapper.codeplex.com. With AutoMapper, you first create a mapping between two
types and then you proceed to mapping an instance of one type on the other. The tool works by
discovering properties with matching names and copying the value of the source into the target.

Common Data for the Common View
A controller action normally focuses on a particular task and the subsequent view.
The granularity of the action and the view, however, might not be the same. It is likely, in
fact, that the view refers to the entire page whereas the action affects only a fraction of the
rendered page. Typically, this happens when the view incorporates some fixed data that is
shared with other views (but not stored in any master pages), such as menus, breadcrumbs,
information about the login, user-specific links, ad hoc images, and so forth. In simple
scenarios, some (but not all) of this information is static and can be easily incorporated
in a master page. In other cases, it is data driven and must be loaded, cached, and made
available to the view.

So where’s the problem? The problem is that the controller action that triggers the view
might have little to do with loading and processing such common data. Imagine a controller
action that updates a record that must also be concerned with the rendering of the menus all
around.

In my opinion, the controller action is also responsible for ensuring that the view gets its
entire data set. So I see no big problems in the controller’s action that retrieves data for
the menus. On the other hand, I want this code to be as smooth and seamless as possible.
An approach that I am inclined to suggest entails the creation of a global class—the
registry—that contains properties and methods to be considered global and accessible from
any view.

304 Part II The Core of ASP.NET MVC

The Registry is an application-specific class whose programming interface and therefore
 depends on the application. Here’s a possible example of a global class. Rest assured that if
you like the approach you can create many such classes to segregate the interface, perhaps
even one registry per controller or one per master page:

public interface IRegistry

{

 // Get/Set the list of countries for editing purposes

 void LoadCountries();

 IList<String> GetCountries();

 // Get menu items

.
 .
 .

}

public class Registry : IRegistry

{

.
 .
 .

}

The Registry class is not the only part of the application you might want to move around and
have available from various places. As discussed in Chapter 4, you can also store the Registry
in the ApplicationContext class along with other dependencies and global objects. Here’s a
sample implementation for ApplicationContext that makes it work as a singleton:

public class ApplicationContext

{

 private readonly IRegistry _registry;

 protected AppContext()

 {

 // Registry

 _registry = new Registry();

 }

 protected static ApplicationContext DefaultInstance = new ApplicationContext();

 public static IRegistry Registry

 {

 get { return DefaultInstance._registry; }

 }

.
 .
 .

}

You can also consider exposing the IRegistry explicitly through a setter for the Registry
property or avoiding the singleton and overloading the ApplicationContext constructor to
inject an IRegistry object. The point here is streamlining the writing of unit tests. Another
 approach is resolving the dependency on IRegistry via an Inversion of Control (IoC) container.
(I’ll discuss IoC containers in Chapter 10, “Testability and Unit Testing,” and Chapter 11,
“Customizing ASP.NET MVC.”)

 Chapter 6 Inside Models 305

You access the registry for reading and writing through the following expression from
anywhere:

ApplicationContext.Registry

A controller method can load data into the view as follows:

var model = new CustomerViewModel();

model.CurrentCountry = parameters.Country;

model.Countries = ApplicationContext.Registry.GetCountries();

model.Customers = customers;

The loaded code doesn’t leak into the view, but it doesn’t belong to the controller either.
At the same time, the data being passed to the view is clearly visible and readable.

Note How is it possible that we’re having this specific problem only now in ASP.NET MVC?
Wasn’t it present with Web Forms, too? Well, server controls and view state work together so that
this problem never shows up. If you use a server control to display common data, your task is
simplified.

With regard to this problem, however, a couple of other solutions have been discussed in the
community and are commonly applied. One is based on using action filters to load into the
ViewData collection any missing piece of data that you don’t want the controller action to dirty
its hands with. As you saw in Chapter 4, an action filter is an attribute that applies to controller
actions and lets you specify what happens before and after each action. When you’re using
action filters, adding information to ViewData instead of any more strongly typed model you
might have is almost a necessity because you might not know the actual type of the model from
the action filter. If your project targets C# 4, though, you can resort to the new keyword dynamic
to avoid using ViewData.

Another solution available only with ASP.NET MVC 2 is based on render actions. As you saw in
Chapter 4, a render action takes a reference to a controller method, executes it, and places the
resulting response in the view. In this way, the view calls back some code on some controller
to return the partial view for a section of the screen being constructed. The benefit is that
you decouple the parts of the controller code that deal with shared data and the response for
a specific request.

Model Binding
In ASP.NET MVC as well as in ASP.NET Web Forms, posted data arrives within an HTTP packet
and is mapped to a collection on the Request object. To offer a nice service to developers,
ASP.NET then attempts to expose that content in a more usable way. In ASP.NET Web Forms,
the content is parsed and passed on to server controls; in ASP.NET MVC, on the other hand,
it is bound to parameters of the selected controller’s method. The process of binding posted
values to parameters is known as model binding and occurs through a registered model
binder class.

306 Part II The Core of ASP.NET MVC

The Model Binder in Action
The model binder is the system component that knows the rules of parameter
binding. The action invoker uses the binder to get parameter values to use in the call to
the controller’s action. The action of the model binder is governed by the following code
executed by the action invoker:

// actionDescriptor contains information about the method being executed

// controllerContext contains information about the current controller context

var dictionary = new Dictionary<string, object>();

foreach (ParameterDescriptor pd in actionDescriptor.GetParameters())

{

 dictionary[pd.ParameterName] = GetParameterValue(controllerContext, pd);

}

The GetParameterValue method is invoked for each expected parameter on the controller’s
method and uses the model binder internally to see whether any rules exist that can be used
to resolve the value for the parameter dynamically.

The DefaultModelBinder Class
By default, ASP.NET MVC uses a built-in, preregistered binder object that corresponds to the
DefaultModelBinder class. The default binder uses convention-based logic to match names
of posted values to parameter names in the controller’s method. Let’s suppose you have
a controller method defined as shown here:

public ActionResult Index(string country, int maxItems) { ... }

If the request contains parameters (route values, query string values, form values) whose
names match “country” and “maxItems,” binding happens automatically as long as types are
compatible. If a conversion cannot be performed, an argument exception is thrown.

The default binder can map primitive types such as string, double, decimal, or DateTime and
related collections. The DefaultModelBinder class also supports binding to complex types and
collections of complex types. (Complex types can also be nested.) Here’s an example:

public ActionResult Edit(Customer customer) { ... }

In this case, the model binder looks for posted values whose key names match the pattern
“parameterName.PropertyName”, such as customer.ID or customer.CompanyName. The prefix
indicating the name of the parameter is not necessary because the default binder also can
resolve the parameter without the prefix. Essentially, for each parameter the default binder
first looks for a possible match on the parameterName.PropertyName expression. If no
match is found, it looks for PropertyName; otherwise, null is returned. However, consider the
following race situation:

Company Name

<input type="text" name="CompanyName" />

Contact Name

<input type="text" name="customer.ContactName" />

 Chapter 6 Inside Models 307

If you are binding to a complex parameter of type Customer with CompanyName and
ContactName properties, only the latter will be successfully resolved. Instead, if you remove
the “customer” prefix, both properties will be resolved because the empty prefix is assumed.
This is to say that all posted values are examined before parameters are processed to
determine the existence of a prefix.

In functional terms, the use of the default binder is transparent to developers—no action is
strictly required on your end—and it keeps the controller code clean.

Note The registered model binder is used explicitly if you define explicit parameters in
the signature of the controller methods. Alternately, you can keep the controller methods
parameterless but use either UpdateModel or TryUpdateModel internally to update a variable
instance with posted values. Both are helper methods defined on the Controller class. Both
methods use the registered model binder internally.

Binding to Collection Types
What if that argument that a controller method expects is a collection? For example, can
you bind the content of a posted form to an IList<T> parameter? The DefaultModelBinder
class makes it possible, but doing so requires a bit of contrivance of your own. Have a look
at Figure 6-4.

FIGuRE 6-4 The page will post an array of country names.

When the user hits the button Load, the form submits its content. Specifically, it sends out
the selection on the two drop-down lists. If the lists have different IDs, the posted content
takes the following form:

DropDownList1=Finland&DropDownList2=Italy

308 Part II The Core of ASP.NET MVC

In classic ASP.NET, this is the only possible way of working. However, if you manage the
HTML yourself, nothing prevents you from assigning the two drop-down lists the same ID.
The HTML DOM, in fact, fully supports this scenario, and all it does when you query is return
an array of elements. Subsequently, the following markup is entirely legal in ASP.NET MVC
and works on nearly all browsers:

<% using (Html.BeginForm("Demo", "Customer")) {%>

<h2>Customers from

 <%= Html.DropDownList("countries",

 new SelectList(ViewData.Model)) %> and

 <%= Html.DropDownList("countries",

 new SelectList(ViewData.Model)) %>

<input type="submit" value="Load" />

</h2>

<% } %>

What’s the expected signature of a controller method that has to process the two selected
countries? Here it is:

public virtual ActionResult Demo(IList<String> countries)

{

.
 .
 .

}

Figure 6-5 shows that an array of strings is correctly passed to the method thanks to the
 default binder class.

FIGuRE 6-5 An array of strings has been posted.

In the end, to ensure that a collection of values are passed to a controller method, you need
to ensure that elements with the same ID are emitted to the response stream. The ID, then,
has to match to the controller method’s signature according to the normal rules of the
binder.

The default binder can also handle most situations in which the collection contains complex
types, nested types, or both:

public virtual ActionResult ComplexDemo(IList<CustomerViewModel> customerInfo)

{

.
 .
 .

}

For model binding to occur successfully, all you really need to do is use a progressive index
on the IDs in the markup. The resulting pattern is prefix[index].Property.

 Chapter 6 Inside Models 309

<fieldset>

<p>

 Company Name

 <input type="text" name="customerInfo[0].CompanyName" />

</p><p>

 Contact Name

 <input type="text" name="customerInfo[0].ContactName" />

</p><p>

 Country

 <%= Html.DropDownList("customerInfo[0].Country", ViewData.Model.Countries))%>

</p>

</fieldset>

<fieldset>

<p>

 Company Name

 <input type="text" name="customerInfo[1].CompanyName" />

</p><p>

 Contact Name

 <input type="text" name="customerInfo[1].ContactName" />

</p><p>

 Country

 <%= Html.DropDownList("customerInfo[1].Country", ViewData.Model.Countries))%>

</p>

</fieldset>

The index is numeric, 0-based, and progressive. Holes in the series (for example, 0 and then 2)
seem to stop the parsing.

Rest assured that if you’re having trouble mapping posted values to your expected hierarchy
of types, it might be wise to consider a custom model binder.

Customizing the Binding Process
Automatic binding stems from a convention-over-configuration approach. Conventions,
though, might sometimes harbor bad surprises. If, for some reason, you lose control over
the posted data (for example, in the case of data that has been tampered with), it can result
in undesired binding—any posted key/value pair will, in fact, be bound. In this regard, you
might want to consider using the Bind attribute to customize some aspects of the binding
process.

The Bind attribute comes with three properties, as described in Table 6-3.

TABLE 6-3 Properties for the BindAttribute class

Property Description

Prefix String property. It indicates the prefix that must be found in the name of the
posted value for the binder to resolve it. If specified, the prefix is mandatory
and no exceptions are made. The default value is the empty string.

Exclude Gets or sets a comma-delimited list of property names for which binding is
not allowed.

Include Gets or sets a comma-delimited list of property names for which binding is
permitted.

310 Part II The Core of ASP.NET MVC

Through the Exclude and Include properties, you can create black-and-white lists of
properties on complex types. This gives you a formidable tool to fight off any attempt to
send your controller data that has been tampered with. Here’s an example:

public ActionResult Insert([Bind(Exclude="Id,CompanyName")] Customer customer)

In this case, no matter what is posted to the controller properties Id and CompanyName on
the Customer class, it will never be processed by the default model binder.

The Bind attribute is often applied to individual parameters on a controller method. However,
you can even define it on a class:

[Bind(Include="CompanyName,ContactName")]

public class CustomerViewModel

{

.
 .
 .

}

When the class is used as an argument type in a controller method, all of its properties will
be bound as indicated by the attribute.

Note Using the Bind attribute on a view-model class is totally legitimate and encouraged. Using
it on a domain object, on the other hand, will lead you to spoiling the model a bit. A clear sign of
this extra coupling is the necessity of linking the System.Web.Mvc assembly to the assembly that
contains the class. This is yet another good reason to use view-model classes.

Custom Model Binders
The default binder does excellent work, but it is a general-purpose tool aimed at working
with most possible types in a way that is not specific to any of them. The Bind attribute gives
you some more control over the binding process, but some reasonable boundaries still exist.
In these cases, all you do is create a custom binder for a specific type.

There are two main reasons you should be willing to create a custom binder. The most
important reason is that the default binder is limited to taking into account a one-to-one
correspondence between posted values and properties on the model. Sometimes the target
model has a different granularity than the one expressed by form fields. The canonical
example is when you employ multiple input fields to let users enter content for a single
property—for example, distinct input fields for day, month, and year that then map to
a single DateTime value. The second reason to go beyond the standard model binder is
to avoid the use of prefixed IDs in the view.

To create a custom binder, you can implement the IModelBinder interface:

public interface IModelBinder

{

 object BindModel(

 ControllerContext controllerContext, ModelBindingContext bindingContext);

}

 Chapter 6 Inside Models 311

Implementing the interface is recommended if you need total control over the binding
process. If, say, all you need to do is keep the default behavior and simply force the binder
to use a non-default constructor for a given type, inheriting from DefaultModelBinder is the
best approach. Here’s the schema to follow:

public CustomerViewModelBinder : DefaultModelBinder

{

 protected override object CreateModel(

 ControllerContext controllerContext,

 ModelBindingContext bindingContext,

 Type modelType)

 {

.
 .
 .

 return new CustomerViewModel(...);

 }

}

Another common scenario for simply overriding the default binder is when all you want is
the ability to validate against a specific type. In this case, you override OnModelUpdated and
insert your own validation logic, as shown here:

protected override void OnModelUpdated(ControllerContext controllerContext,

 ModelBindingContext bindingContext)

{

 var obj = bindingContext.Model as CustomerViewModel;

 if (obj == null) return;

 // Apply validation logic here for the whole model

 if (String.IsNullOrEmpty(obj.CompanyName))

 {

 bindingContext.ModelState.AddModelError("CompanyName", ...);

 }

.
 .
 .

}

You override OnModelUpdated if you prefer to keep in a single place all validations for
any properties. You resort to OnPropertyValidating if you prefer to validate properties
individually.

Implementing a Model Binder
Here’s an example of a custom binder that implements the IModelBinder interface:

public class CustomerViewModelBinder : IModelBinder

{

 public object BindModel(ControllerContext controllerContext,

 ModelBindingContext bindingContext)

 {

 if (bindingContext == null)

 throw new ArgumentNullException("bindingContext");

 // Get the model instance or create one if needed

 var obj = (CustomerViewModel) (bindingContext.Model ?? new CustomerViewModel());

312 Part II The Core of ASP.NET MVC

 //

 obj.CompanyName = FromPostedData<string>(bindingContext, "CompanyName");

.
 .
 .

 return obj;

}

// Helper routine

private T FromPostedData<T>(ModelBindingContext context, string key)

{

 // Get the value from any of the input collections

 ValueProviderResult result;

 context.ValueProvider.TryGetValue(key, out result);

 // Set the state of the model property resulting from value

 context.ModelState.SetModelValue(key, result);

 // Return the value converted (if possible) to the target type

 return (T) result.ConvertTo(typeof(T));

}

Note that when writing a model binder you are in no way restricted to getting information
for the model uniquely from the posted data—which represents only the most common
 scenario. You can grab information from anywhere—for example, from the ASP.NET cache
and session state—parse it, and store it in the model.

Registering a Custom Binder
You can associate a model binder with its target type globally or locally. In the former case,
any occurrence of model binding for the type will be resolved through the registered custom
binder. In the latter case, you apply the binding to just one occurrence of one parameter in
a controller method. Global association takes place in the global.asax file as follows:

void Application_Start()

{

.
 .
 .

 ModelBinders.Binders[typeof(CustomerViewModelBinder)] =

 new CustomerViewModelBinder();

}

Local association requires the following syntax:

public ActionResult Edit(

 [ModelBinder(typeof(CustomerViewModelBinder))]

 CustomerViewModel customerInfo)

{

.
 .
 .

}

 Chapter 6 Inside Models 313

As you can tell clearly from the preceding code within Application_Start, you can have
 multiple binders registered. You can also override the default binder if required.

ModelBinders.Binders.DefaultBinder = new MyNewDefaultBinder();

Finally, note that global binders take precedence over local binders.

Model binding is concerned with reading data from the surrounding environment—most
likely the posted data—and stuffing it into controller action parameters. Related to the idea
of the model, though, is the idea of validation.

In the next chapter, I’ll review various techniques for validating data in the context of input
forms that post data and trigger server operations.

Summary
In MVC, the role of the Model actor is to represent the model for any data being worked on
in the view. The issue to be decided is which data structures do you use to represent the data
flowing in and out of the view.

In simple architectures where everything lives in the Web server tier, except perhaps the
 database, it might be acceptable that you use just one flavor of the Model actor. In this case,
the model represents the data the application works on and the data worked on in the view.
In more sophisticated scenarios, where you essentially have multiple layers in the server
(if not multiple physical tiers), it is vital that you recognize the difference between the domain
model and the view-model.

The domain model is the representation of data you create for the sake of business
processing; the view-model is the representation of data you create for the sake of the view.
The controller is responsible for getting domain objects and mapping them to view objects.
The view just receives view objects that contain a representation of the data that addresses
only the needs of the view. Are these models really different? Actual classes might not be
that different in all cases. But the view-model and domain model definitely play different
roles in the context of any layered solution.

In this chapter, I also touched upon a third flavor of model that represents the data as it
is received by the controller. Model binders provide you with complete control over the
deserialization of form-posted values into simple and complex types. By using model
binders, you keep your controller’s code free of dependencies on ASP.NET intrinsic objects,
and thus make it cleaner and more testable.

Model binders also are a nice fit for validation code, and ASP.NET MVC 2 comes with an
effective, new built-in binder that weds validation through data annotations with binding to
model types. The whole theme of validation doesn’t end here, though. In the next chapter, I’ll
address it from a much more practical perspective as I delve deep into input forms.

 315

Part III

Programming Features

 317

Chapter 7

Data Entry in ASP.NET MVC
Whatever you can do or dream, begin it.

—Wolfgang von Goethe

Classic ASP.NET bases its programming model on the assumption that state is maintained
across postbacks. This is not true at all at the HTTP protocol level, but it is brilliantly
 simulated using the page view state feature and a bit of work in the page life cycle. The view
state, which is so often kicked around as a bad thing, represents a great contribution to
 establishing a stateful programming model in ASP.NET, and that programming model was
one of the keys to ASP.NET’s success and rapid adoption.

The ASP.NET MVC framework just uses a different pattern, one that is not page-based and
relies on a much thinner abstraction layer than Web Forms. As a result, you don’t have rich
native components such as server controls to quickly arrange a nice user interface where
elements can retain their content across postbacks. This fact seems to result in a loss of
 productivity, at least for certain types of applications, such as applications heavily based
on data entry.

Is this really true, though?

If you’ve grown up with Web Forms and its server controls, you might be shocked when
transported into the ASP.NET MVC model. Data entry is a scenario in which server controls
really shine and in which their postback and view-state overhead saves you from doing
a lot of work. Server controls also give you a powerful infrastructure for input validation.
Today, in ASP.NET MVC you have the same functional capabilities as you do with Web Forms,
only they’re delivered through a different set of tools.

You have some good scaffolding when it comes to creating controllers and views for most
common CRUD (Create, Read, Update, Delete) scenarios. You have templated helpers to
 automatically create simple but effective viewers and editors for any primitive or complex
type. You have data annotations to declaratively set your expectations about the content of
a field and its display behavior. You have model binders to serialize posted values into more
comfortable objects for server-side processing. Finally, you have tools for both server and
client validation.

You have the tools, and although they’re certainly different than in Web Forms, they’re
equally effective. This chapter aims to show you how to grab input data through forms,
 validate it, and process it against a persistence layer.

318 Part III Programming Features

The Select-Edit-Save Pattern
Many Web applications revolve around the Select-Edit-Save pattern (SES). Essentially, they
need to let users select an item of data, place it into edit mode, play with its content, and
then save changes back to the storage layer.

In Web Forms, handling that series of actions by the user was made particularly easy by data
binding and data source controls. In ASP.NET MVC, you need to take a lower-level approach
and stay closer to the Web metal, but you’re not left alone to handcraft every little bit
of HTML and HTTP needed.

Presenting Data
I’ll illustrate the SES pattern through an example that starts by letting users pick a customer
from a drop-down list. Next, the record that contains information about the selected
 customer is rendered into an edit form, where updates can be entered and eventually
 validated and saved.

For simplicity, but without any loss of generality, the domain model consists of a LINQ-to-SQL
model that includes the sole Northwind Customers table. Figure 7-1 shows the initial user
 interface of the sample Customer Management System, an application page I’ll use to
 demonstrate SES concepts with ASP.NET MVC.

FIGuRE 7-1 The initial screen, where users begin by making a selection

 Chapter 7 Data Entry in ASP.NET MVC 319

Handling Selection
The following listing shows the controller action that is used to populate the drop-down
list to offer the initial screen to the user. Note that the structure of the action’s code fulfills
the patterns I identified in Chapter 4, “Inside Controllers,” and Chapter 6, “Inside Models.”
Note that in this simple case, a plain LINQ-to-SQL query to get data and direct access to
the ViewData collection would have accomplished the job as well.

public ActionResult List()

{

 // Get the data to populate the list of customers. (Data is obtained

 // from the service layer as discussed in Chapter 4)

 var list = _service.GetCustomerListItems();

 // Prepare the view model (See Chapter 6)

 var data = new CustomerIndexViewModel();

 data.Customers = new SelectList(list, "CustomerID", "CompanyName");

 return View("List", data);

}

The view that produces the interface in Figure 7-1 is shown here:

<fieldset title="Edit customer">

 <p>Customers (as of today)</p>

 <% Html.BeginForm("Edit", "Customer"); %>

 <%= Html.DropDownList("listCustomers", ViewData.Model.Customers) %>

 <input type="submit" id="btnEdit" name="btnEdit" value="Edit" />

 <% Html.EndForm(); %>

</fieldset>

After the user has selected a customer from the list, by clicking a submit button he submits
a POST request for an Edit action on the CustomerController class.

URL Formatting
Note that at this point the URL displayed in the browser’s address bar looks something like this:

http://yourserver/customer/list

Unless you take special care when implementing the Edit method, after the post has occurred
the URL changes to the following:

http://yourserver/customer/edit

There’s nothing particularly bad about this, and the page still works correctly. However,
you’re cutting off (without any apparently valid reason) a good part of the natural
RESTfulness of ASP.NET MVC. In other words, the goal should be to show a URL that
 identifies the resource being edited. Here’s an example:

http://yourserver/customer/edit/alfki

320 Part III Programming Features

In addition, you need a mechanism in your controller that allows you to change the
 customer whose information is being edited by simply changing the last fragment in the
browser’s address bar—the customer ID. In other words, you need a dual interface to select
the customer to edit—one interface for editing via the graphical user interface, and one
 interface for editing via the browser’s address bar. (See Figure 7-2.)

FIGuRE 7-2 The URL reflects the customer whose information is currently being edited.

Editing Data
The application enters into edit mode when the user posts from the initially displayed form
you saw in Figure 7-1. That form posts to the Edit method on the Customer controller. What
do you expect from the Edit method? As you can see in Figure 7-2, you should expect it
to retain a drop-down list from which the user can select another customer while displaying
a second HTML form to edit the selected record.

Displaying an Input Forms
The following code shows a possible implementation for the Edit method on the Customer
controller:

// The parameter listCustomers is automatically resolved if you have a posting

// HTML element with the same name in the form. In this case, it is the drop-down

 Chapter 7 Data Entry in ASP.NET MVC 321

// list of customers.

public ActionResult Edit(string listCustomers)

{

 // Get information about the customer to edit

 string customerId = listCustomers;

 Customer customer = _service.GetCustomer(customerId);

 // Get the data to populate the list of customers. (Data is obtained

 // from the service layer as discussed in Chapter 4)

 var list = _service.GetCustomerListItems();

 var data = new CustomerEditViewModel();

 data.Customers = new SelectList(list, "CustomerID", "CompanyName");

 data.CustomerBeingEdited = customer;

 return View("Edit", data);

}

You might have noticed that the drop-down list has to be repopulated. This is a consequence
of not having the view state around. In the following code, I just place another call to
the service layer; a more serious application would use a registry approach (as you saw
in Chapter 6) and use the ASP.NET cache to store data upon loading. In any case, this is
one instance of the classic scenario where the same block of data is shared among multiple
views.

Here’s the code for the view:

<table>

 <tr>

 <td valign="top">

 <% Html.BeginForm("Edit", "Customer"); %>

 <%= Html.DropDownList("listCustomers", ViewData.Model.Customers) %>

 <input type="submit" id="btnEdit" name="btnEdit" value="Edit" />

 <% Html.EndForm(); %>

 </td>

 <td valign="top">

 <% Html.RenderPartial("CustomerEdit",

 ViewData.Model.CustomerBeingEdited); %>

 </td>

 </tr>

</table>

CustomerEdit is a user control that contains the HTML form to edit the selected
customer.

As you can see, having multiple forms in the same view is not a problem in ASP.NET MVC
because it has never been a problem in plain HTML. Only Web Forms considered it to be
a problem, thus limiting us for years to just one (server-side) form. Note also that you still
haven’t done anything serious to ensure that the URL displays the ID of the customer being
edited.

322 Part III Programming Features

Synchronizing the View and the URL
You execute the preceding code when the user posts to the page to edit customer
 information. Imagine that a user types the following URL in the address bar of the
browser:

http://yourserver/customer/edit/alfki

The application receives an HTTP GET request and maps it to the Edit method of the
Customer controller. Unfortunately, though, the parameter is not matched this time. There’s
no listCustomers value in the body of the request or in the collection of routed values. This
is the situation assuming you take the standard route; if you rename the id parameter of the
standard route or add another route, the match might even work. However, the problem
here is clearly not the route.

The point is that to keep the view and URL in sync you need to have two distinct Edit
 methods—one for an HTTP POST request and one for any HTTP GET request. This scenario
is fully supported by ASP.NET MVC through the AcceptVerbs and ActionName attributes you
met in Chapter 4. Here’s a possible way to rewrite the Edit method:

[ActionName("Edit"), AcceptVerbs(HttpVerbs.Post)]

public ActionResult EditViaPost(string listCustomers)

{

 // Same code as shown before for Edit

.
 .
 .

}

[ActionName("Edit"), AcceptVerbs(HttpVerbs.Get)]

public ActionResult EditViaGet(string id)

{

 // Same code as shown before for Edit

.
 .
 .

}

You create two methods with different names and bind both Edit actions using the
ActionName attribute. In addition, you use AcceptVerbs to restrict each method to one
 particular HTTP verb. In this way, if the user types a full URL in the address bar, the
URL obtains the specified customer in edit mode; if the user posts from the displayed
form to do the same, on the other hand, she can edit the customer but the URL is not
updated.

To add insult to injury, you still have two methods with the same body, fully ignoring the
common principle of “Once And Only Once” (OAOO). You need to do further refactoring,
and you need to introduce a new pattern—the Post-Redirect-Get (PRG) pattern.

 Chapter 7 Data Entry in ASP.NET MVC 323

Note Regarding repeated code, you might be surprised to see that I mentioned the OAOO
principle instead of the most popular “Don’t Repeat Yourself” (DRY). Both come from the
world of Extreme Programming (XP) and are two of the 12 common XP practices. What’s the
 difference between the two? DRY refers to storing data in one place and with one unambiguous
 representation. OAOO refers to implementing a given behavior once and only once. It turns out
that OAOO is more difficult to achieve and often only a driving vector. OAOO is the ideal goal of
any refactoring attempt, and it’s similar to normalization, as you might know it from the theory
of relational databases.

The Post-Redirect-Get Pattern
The purpose of the pattern is self-explanatory. It essentially teaches you a way to
 reuse the same code to serve both GET and POST requests for the same resource or, as
in ASP.NET MVC, for the same action. You start by fully writing your code for the GET
 scenario, as shown here:

[ActionName("Edit"), AcceptVerbs(HttpVerbs.Get)]

public ActionResult EditViaGet(string id)

{

 var data = new CustomerViewModel();

 data.Customers = ...;

 data.CustomerBeingEdited = ...;

 return View("Edit", data);

}

Next, you refactor the POST method so that it first does its own things (if any) and then
 redirects to the GET action. Here’s the new version of the POST action:

[ActionName("Edit"), AcceptVerbs(HttpVerbs.Post)]

public ActionResult EditViaPost(string listCustomers)

{

 string customerId = listCustomers;

 return RedirectToAction("Edit",

 new RouteValueDictionary(new { id = customerId }));

}

If the user types the URL directly in the address bar, the selected customer is edited and
the view and URL are in full sync. If the user picks up a customer from the drop-down list
and then posts to edit it, a redirection occurs and the Edit action receives an HTTP GET
request.

The PRG pattern is helpful in keeping the URL and view in sync, but it’s even more useful
for keeping update code and the view neatly separated, as you’ll see in a moment. In this
 regard, the PRG pattern saves you from the nasty F5 problem (page refresh requests from

324 Part III Programming Features

the client). If the user refreshes the currently displayed page (that is, he hits the F5 button)
after an update, no POST is repeated and no message pops up to announce your intent to
resend data. In fact, when F5 is pressed the browser repeats its latest action. When using
PRG, the browser repeats a GET action, not a POST action, when from the user’s perspective,
their last action was a POST.

Saving Data
After the input form is displayed, the user enters any valid data and then presses the
 button that posts the current content of the form. Here’s a typical form that posts
changes:

<% Html.BeginForm("Update", "Customer", new {id = ViewData.Model.CustomerID}); %>

.
 .
 .

<% Html.EndForm() %>

The resulting URL for a customer ID of ALFKI is the following:

http://yourserver/customer/update/alfki

The content of the form is uploaded with the request and packaged into the Request
 object. However, as you saw in Chapter 6 a controller’s method has various options for
 binding posted data to its own parameters.

Binding Input Data
Let’s examine a few possible signatures for the Update action that is ultimately responsible
for saving changes on the edited customer:

public ActionResult Update(string id,

 string companyName,

 string contactName,

 string country,

 string city,

 string address);

The id parameter is resolved through route data, whereas all the other parameters are
 resolved in the presence of input elements with matching IDs. This signature also allows
you to pass in fixed data for testing purposes. Another signature is the following:

public ActionResult Update(string id);

In this case, the remaining input data is resolved using the TryUpdateModel on the
 controller class that uses model binders internally.

 Chapter 7 Data Entry in ASP.NET MVC 325

Validation
Most of the time, you have a client-side validation mechanism that prevents the user from
posting patently invalid data. However, having a client-side validation layer—no matter how
effective it might be—is never a good reason to skip server-side data validation.

After you have gathered all the information about the record to update, you might want to
validate it to see whether it is safe to store its content to the database. Server-side validation
depends on the structure of your domain model and on the technology you might use to
add validation.

Persistence
Updating the object in the database is a task that belongs to the Object/Relational Mapper
(O/RM) you have chosen or, more generally, to the Data Access Layer. If you use an O/RM
such as LINQ-to-SQL or Entity Framework, you might need to reload the record and update
it against any posted data:

var customer = _service.GetCustomer(id);

TryUpdateModel(customer);

The TryUpdateModel method is defined on the controller class and updates the properties
of the provided object with any matching value found in the posted data. Finally, the freshly
modified domain object is persisted to the database using the persistence tools of the O/RM
of choice. The following code shows how it works with LINQ-to-SQL:

public ActionResult Update(string id)

{

 using (var context = new NorthwindDataContext())

 {

 try

 {

 var customer = (from c in context.Customers

 where c.CustomerID == id

 select c).FirstOrDefault<Customer>();

 TryUpdateModel(customer);

 context.SubmitChanges();

 }

 catch(Exception ex) { ... }

 }

 return RedirectToAction("Edit",

 new RouteValueDictionary(new { id = id }));

}

Note the call to RedirectToAction at the end of the update procedure to ensure that the next
view is the Edit view. The Edit view, in particular, will be opened on the same record just
 updated. The PRG pattern guarantees that if the user refreshes the page no second attempt
is made to apply changes, as shown in Figure 7-3. With the PRG pattern, the latest action,
in fact, is now a GET action.

326 Part III Programming Features

FIGuRE 7-3 The user pressed F5, and the browser is about to repeat the latest action.

Data Validation
In Chapter 6, I discussed various ways to add validation capabilities to a server-side domain
model. Abstractly speaking, a validation layer is the portion of code designed to guarantee
the correctness, integrity, and coherence of any significant aggregation of data you manage.
In other words, the validation layer exists to ensure that business rules apply to the data you
work with.

Validation is essential on the server side, where you typically manage the persistence of the
data. Validation is also extremely useful on the client side, where you might want to employ
it to stop incorrect or inconsistent data at the gate.

Validation on the Server Side
The way in which you add validation depends on the specific technology you might employ
to create the model and to persist it. Attribute-based validation blocks, such as data
 annotations in the Microsoft .NET Framework 4, are popular. However, they aren’t always as
effective as one might expect when you have to deal with extremely dynamic rules, or even
rules that some users can enter or modify on the fly.

A much more flexible approach is to write your own infrastructure that can get input data
preferably from outside of the code (for example, from configuration files). In any case,
you need to have, or to offer, an API for checking whether a given object is in a valid state.
In addition, the validation block must be able to report why a given object is not valid.

Let’s go through an example of a custom server-side validation layer similar to what
I discussed in Chapter 6.

 Chapter 7 Data Entry in ASP.NET MVC 327

Designing a Validation Layer with Enterprise Library
The public API for a custom validation layer is typically incorporated in all objects in the
 domain. This can be done by defining an interface and implementing that in a base class.
As you did in Chapter 6, you can have an interface like this:

interface ISupportValidation

{

 bool IsValid{get;}

 ValidationResults Validate();

}

The ValidationResults type is a collection of objects that contains a report about the detected
error. The report typically includes the object that was validated, any error message, perhaps
a tag for the purpose of categorization, and a reference to the object that validated the
 instance of the domain object. If you create your own library, the details of the class are up to
you. If you opt for Enterprise Library as the infrastructure for defining and checking business
rules, you find such a class there and ready to use. The following code shows a possible
 custom implementation:

public class ValidationResults : List<ValidationResult>

{

}

public class ValidationResult

{

 public string ErrorMessage {get; set;}

 public object Target {get; set;}

 public string PropertyName {get; set;}

 public string Tag {get; set;}

}

You also need to define a base class that implements the validation API. The following code
shows a class you can use as the root of your model:

public class MyRootDomainObject : ISupportValidation

{

 public virtual bool IsValid

 {

 get

 {

 try

 {

 return Validate().IsValid;

 }

 catch

 {

 return false;

 }

 }

 }

328 Part III Programming Features

 ValidationResults ISupportValidation.Validate()

 {

 Validator validator = ValidationFactory.CreateValidator(this.GetType());

 var results = validator.Validate(this);

 return results;

 }

}

The preceding code is based on Enterprise Library.

When you derive a new type from MyRootDomainObject, the type automatically inherits the
validation capabilities built into the parent class. How do you specify your business rules?

The approach based on attributes is easy to implement and effective while you have static
rules that do not change regularly:

public class Customer : MyRootDomainObject

{

 public Customer()

 {

 Id = string.Empty;

 PostalCode = String.Empty;

.
 .
 .

 }

 [NotNullValidator(MessageTemplate="The customer ID cannot be null")]

 [StringLengthValidator(5, 5, MessageTemplate="ID must be 5 characters long")]

 public virtual string Id { get; set; }

.
 .
 .

}

If you can’t afford to recompile the code when business rules change, an attribute-based
approach is not really the best choice. Attributes, in fact, are hard coded in the deployed
binaries.

Saving Business Rules to a Configuration File
As mentioned in Chapter 6, Enterprise Library offers you the possibility of defining business
rules in a configuration file that can be updated offline without requiring a new compilation.
At the same time, you can also modify rules on the fly through an ad hoc user interface by
simply updating the configuration file programmatically. Last but not least, when business
rules are kept offline and the validation block of Enterprise Library is used, you are free of
validating any objects regardless of the technology employed in the creation of the model.
Figure 7-4 shows the configuration dialog box for Enterprise Library 4.x.

 Chapter 7 Data Entry in ASP.NET MVC 329

FIGuRE 7-4 Using a configuration dialog box to define a sample validation rule set

The dialog box shows how you visually proceed to define a rule that expects the typical
U.S. ZIP code format in the PostalCode property of the Customer type. The output of the
 dialog box of Figure 7-4 is the following XML content:

<configuration>

 <configSections>

 <section name="validation"

 type="Microsoft.EnterpriseLibrary.Validation, ..." />

 </configSections>

 <validation>

 <type assemblyName="MyDataModel" name="MyDataModel.Customer">

 <ruleset name="USAddress">

 <properties>

 <property name="PostalCode">

 <validator pattern="\d{5}(-\d{4})?"

 options="None"

 patternResourceName=""

 patternResourceType=""

 messageTemplate=""

 messageTemplateResourceName=""

 messageTemplateResourceType=""

 tag=""

 type="RegexValidator,

 Microsoft.EnterpriseLibrary.Validation"

 name="Regex Validator" />

 </property>

 </properties>

 </ruleset>

 </type>

 </validation>

</configuration>

330 Part III Programming Features

Embedded in the application’s configuration file, this setting will be processed by the Validate
method of the root class, resulting in a response for the validity of the tested object.

If new rules are to be added, or if some parameters of an existing rule are to be modified,
all you have to do is edit a small segment of the configuration file. This happens regardless
of what object model you have, and whether it’s created by you or generated through
a designer such as the LINQ-to-SQL or Entity Framework designer.

Important Because Microsoft is integrating Data Annotations in the .NET Framework 4,
it might seem that attribute-based validation is the way to go. Attribute-based validation
 certainly works and is a relatively simple approach both to understand and to code. However,
attributes are hard-coded once they are compiled and are simply meant to statically decorate
 properties. XML-based rule sets in Enterprise Library offer an unprecedented level of flexibility.
An alternative to using Enterprise Library to support dynamic business rules is to create a new set
of attributes that expose a query interface to callers. This is in no way different from writing your
own validation layer from scratch. Attribute-based validation is an excellent feature to have, but
it mostly works for view models and client-side scenarios.

Checking the Validity of an Object
After you have a validation layer in place, checking the validity of an object takes you only
a couple of lines of code. This code can consist of a simple short sequence of if statements
or rely on an entire validation layer. From the perspective of an input form, here’s the type
of code you might have in a controller:

public ActionResult Update(CustomerViewModel model)

{

 // Invoke the service layer to update the customer

 try {

 _service.UpdateCustomer(model);

 }

 catch(BusinessRuleException ex)

 {

 ModelState.AddModelError("Business Rule Violation", e.ValidationResults);

 }

}

A slim controller simply delegates any action to the service layer and receives a response from
it about the success or failure of the operation. The service layer might throw an exception or
swallow the exception and return a composite response object. Let’s tackle the first scenario
assuming that the target object inherits from the aforementioned MyRootDomainObject class
and that Enterprise Library is used in the implementation of the validation layer.

The method UpdateCustomer checks the validity of the object and throws a custom
 exception if it fails:

public void UpdateCustomer(Customer customer)

{

 // Check against the validation layer (assume the domain

 // object inherits from MyRootDomainObject)

 Chapter 7 Data Entry in ASP.NET MVC 331

 ValidationResults results = customer.Validate();

 if (!results.IsValid)

 {

 throw new BusinessRuleException(results);

 }

 // Proceed with the operation

.
 .
 .

}

public class BusinessRuleException : Exception

{

 public BusinessRuleException : base() {}

 public BusinessRuleException(ValidationResults results) : base()

 {

 ValidationResults = results;

 }

 public ValidationResults ValidationResults { get; private set; }

}

The method throws a custom exception that encapsulates all validation information stored
in the ValidationResults type.

Exceptions are more expensive than plain code. For this reason, it is preferable to avoid
 exceptions to handle validation. Here’s a possible alternative for the UpdateCustomer method:

public UpdateCustomerResult UpdateCustomer(Customer customer)

{

 // Check against the validation layer (assume the domain

 // object inherits from MyRootDomainObject)

 ValidationResults results = customer.Validate();

 if (!results.IsValid)

 {

 return new UpdateCustomerResult(results);

 }

 // Proceed with the operation

.
 .
 .

 return new UpdateCustomerResult();

}

public class UpdateCustomerResult

{

 public UpdateCustomerResult()

 {

 ValidationResults = new ValidationResults();

 IsValid = true;

 }

 public UpdateCustomerResult(ValidationResults results)

 {

 ValidationResults = results;

 IsValid = false;

 }

332 Part III Programming Features

 public bool IsValid { get; private set; }

 public ValidationResults ValidationResults { get; private set; }

}

You define an ad hoc, data transfer object to contain the response of the method, which
 includes any return value plus any error information. The controller’s code changes as follows:

public ActionResult Update(CustomerViewModel model)

{

 // Invoke the service layer to update the customer

 var result = _service.UpdateCustomer(model);

 if (!result.IsValid)

 {

 // AddModelError can accept only a string or an exception. Let's loop

 // through the validation results and add them individually. Alternately,

 // use an extension method.

 foreach(var r in result.ValidationResults)

 ModelState.AddModelError(r.PropertyName, r.ErrorMessage);

 return View();

 }

}

As you can see, the business layer returns any validation results and the presentation logic
then processes it further to decide whether this is going to have an impact on the user
 interface. The ModelState property on the Controller class is the missing link between the
presentation logic and user interface.

Important In Chapter 4, I discussed the role of the controller and identified two possible
 stereotypes for it: controller and coordinator. These stereotypes nearly match two adjectives—
fat and skinny—that are often used in the development community to describe the expected
 structure of the controller class. A fat controller is the controller that takes care of all operations,
including the validation and execution of data access tasks. A skinny controller is the controller
that delegates most of the work to the business layer and is limited to getting results and
 preparing the next view. The code discussed earlier addresses a scenario in which the controller
class acts as the coordinator or, if you prefer, is particularly skinny.

The Model State
The ModelState property on the Controller class is designed to express the state of an object
that belongs to the application’s model. Strictly speaking, the definition is correct, but it is
a bit obscure. The ModelState property is part of the ViewData collection and is an instance
of the ModelStateDictionary class. Here’s its implementation in the Controller class:

public ModelStateDictionary ModelState

{

 get { return base.ViewData.ModelState; }

}

At the end of the day, the class ModelStateDictionary is a helper class that contains
 information about the results of two possible operations: model binding and model
validation.

 Chapter 7 Data Entry in ASP.NET MVC 333

When you perform a model binding operation via a model binder, you expect to find errors
added to the model state dictionary to report the state of the operation if any binding failed.
Likewise, when you validate the state of an object, you can put your error messages into the
model state dictionary. From here, you can draw the conclusion that the ModelState property
on the controller class is the container of error messages resulting from binding, validation,
or both.

The model state dictionary is a collection of ModelState objects:

public class ModelState

{

 private ModelErrorCollection _errors;

 public ModelState();

 public ModelErrorCollection Errors { get; }

 public ValueProviderResult Value { get; set; }

}

You can add a model state through the Add method, as follows:

public void Add(string key, ModelState value);

public void Add(KeyValuePair<string, ModelState> item);

Alternately, you can use a more direct and simpler syntax based on the AddModelError
methods:

public void AddModelError(string key, string errorMessage);

public void AddModelError(string key, Exception exception);

The AddModelError method adds the specified error message or exception to the Errors
 collection of the model state entry with a matching key name. If no such entry is found,
a new one is automatically created.

In ASP.NET MVC, the ModelState property on the controller class is the preferred way of
 collecting binding and validation errors for the purpose of giving feedback to the user. You
are not strictly required to always use ModelState; however, there are benefits in doing so.
Some HTML helpers, in fact, are smart enough to read the content of the dictionary and
 display appropriate messages. By reporting error messages to ModelState, you gain some
free user interface assistance.

In a preceding code snippet, I used a loop to add all errors reported by the service layer
to the model state dictionary. Alternately, you could also define an extension method,
as demonstrated here:

public static class ModelStateExtensions

{

 public static void AddModelError(

 this ModelStateDictionary modelStateDictionary,

 ValidationResults validationResults)

 {

 foreach (var r in validationResults)

 modelStateDictionary.AddModelError(r.PropertyName, r.ErrorMessage);

 }

}

334 Part III Programming Features

Some applications at times might decide to swallow exceptions and hide the details of
 certain errors from their users. There are errors, however, that can’t be ignored and must be
communicated to the user. Validation errors are among these.

Giving Feedback to the User
In a typical scenario, the service layer method invoked by the controller validates any data
and reports any error to the controller by either throwing an exception or storing details in
a data transfer object. The controller then loads the invalid model state into the model state
dictionary and renders the view. Let’s see how this can happen.

Direct Rendering of the View
The following code shows a simple scenario for rendering error messages to the view and
giving feedback to the user when an update fails:

<!-- Excerpt from the Edit.aspx view -->

<form method="post" action="/customer/update">

 <input type="text" id="name" name="name" />

 <%= Html.ValidationMessage("name")%>

.
 .
 .

 <input type="submit" value="Save" />

</form>

The form lists a few input fields. Each input field is characterized by a code block displaying
a validation message, if there is any. When the form posts, the controller method forwards
the call to the service layer, receives a response, and then renders the view, as follows:

public ActionResult Update(CustomerViewModel model)

{

 // Invoke the service layer to update the customer

 var result = _service.UpdateCustomer(model);

 if (!result.IsValid)

 {

 ModelState.AddModelError(result.ValidationResults);

 return View();

 }

.
 .
 .

}

In the case of errors, the ValidationMessage automatically filters the content of the model
state to display any error message that relates to the specified input field. By convention, the
ASP.NET MVC machinery can also automatically style input fields with pending errors using

Boykma
Text Box
Download from Wow! ebook <www.wowebook.com>

 Chapter 7 Data Entry in ASP.NET MVC 335

a default cascading style sheet (CSS) style named input-validation-error. Such a CSS class
is defined in the default style sheet added to the standard project template:

.input-validation-error

{

 border: 1px solid #ff0000;

 background-color: #ffeeee;

}

The CSS style can, of course, be customized. (See Figure 7-5.)

FIGuRE 7-5 Displaying an error message via the ValidationMessage helper

In the list of standard HTML helpers, you find two methods that can be useful for
 displaying feedback to the user about incorrect input data. One of these helpers is
ValidationMessage.

You use ValidationMessage in a code block and initialize it with the name of the model
state entry to investigate. The model state name is the key the service layer (or in a simpler
 scenario, the controller itself) used to add a model error to the dictionary. Most of the time,
the key matches the name of an input field. The helper displays a message if the specified
field contains an error in the model state dictionary associated with the current view.

In addition to or as an alternative to ValidationMessage, you can use ValidationSummary.
As the name suggests, the ValidationSummary helper renders the list of all detected errors by
means of a bulleted list. (See Figure 7-6.)

336 Part III Programming Features

FIGuRE 7-6 The ValidationSummary helper in action

By default, validation messages and the validation summary work independently of one
 another; if both are used in a view, both display their messages, which in the end are
 duplicated. In ASP.NET MVC 2, you can use a special overload of the ValidationSummary helper
that displays only messages not already rendered by a specific ValidationMessage helper.

Finally, an ad hoc CSS style also exists for the validation summary. The CSS class is defined as
follows:

.validation-summary-errors

{

 font-weight: bold;

 color: #ff0000;

}

So far we’ve considered a relatively simple scenario where any detected error is directly
 rendered through the view. Earlier in the chapter, though, I discussed the PRG pattern, which
advocates the use of a redirect to render the view after a POST action. Because model state
errors are part of the view data, what happens if a redirect is performed instead of simply
rendering the view?

The TempData Collection
The PRG pattern is an old pattern of Web applications that has been revamped by ASP.NET
MVC. The reason is that ASP.NET MVC takes you closer to the metal and then provides you

 Chapter 7 Data Entry in ASP.NET MVC 337

with more control over the life cycle of a request. The primary purpose of the PRG pattern is
to avoid duplicate form submissions; the trick used for this purpose is redirecting to a page
that just renders rather than having the posted command render the new form directly.

The PRG pattern is not specific to ASP.NET MVC and can easily be used with Web Forms,
too. The problem is that with Web Forms, the postback mechanism is so natural and fully
 integrated in the rendering cycle that nobody would even think of using a redirect. If you
want to update a Web Forms page, you simply bind server controls to fresh data and go. In
ASP.NET MVC, conversely, you work at a lower abstraction level and can get full control of
the rendering process.

So when the PRG pattern is used, the entire content of the ModelState object is lost, including
any validation messages. Consider the following code snippet:

public ActionResult Update(CustomerViewModel model)

{

 // Invoke the service layer to update the customer

 var result = _service.UpdateCustomer(model);

 if (!result.IsValid)

 {

 ModelState.AddModelError(result.ValidationResults);

 return RedirectToAction("Edit", new RouteValueDictionary(new { id = model.Id });

 }

.
 .
 .

}

In the case of invalid input, the controller redirects to the Edit action so that the user can fix
the values. A redirect is just another action suggested to the browser. It turns out that the
request that actually displays the view to the user is a new GET action that is distinct from the
original POST. Any content prepared by the controller for the view is then lost. The content of
the ModelState collection is no exception.

How can you preserve view-specific information across a redirect? You copy any
 information you intend to use in the view in a persistent data container—the TempData
dictionary.

The TempData dictionary is a property of the ViewPage class and is defined as follows:

public TempDataDictionary TempData

{

 get

 {

 return this.ViewContext.TempData;

 }

}

The TempDataDictionary is a plain dictionary class that, in addition to the typical dictionary
interfaces, also implements the ISerializable interface. It represents a set of data that needs to
be persisted across successive requests.

338 Part III Programming Features

Any content stored in the dictionary is processed by an ad hoc, temporary data provider
object that takes care of persistence. The temporary data provider object belongs to the
 controller and is used within the ExecuteCore method of the Controller class, as I briefly
 hinted at in Chapter 4:

// Defined in the Controller class

protected override void ExecuteCore()

{

 base.TempData.Load(base.ControllerContext, this.TempDataProvider);

 try

 {

 string requiredString = this.RouteData.GetRequiredString("action");

 if (!this.ActionInvoker.InvokeAction(base.ControllerContext, requiredString))

 {

 this.HandleUnknownAction(requiredString);

 }

 }

 finally

 {

 base.TempData.Save(base.ControllerContext, this.TempDataProvider);

 }

}

The TempDataProvider property of the Controller class is defined as follows:

public ITempDataProvider TempDataProvider

{

 get

 {

 if (this._tempDataProvider == null)

 {

 this._tempDataProvider = new SessionStateTempDataProvider();

 }

 return this._tempDataProvider;

 }

 set

 {

 this._tempDataProvider = value;

 }

}

As you can see, by default the content of the TempData dictionary is saved in the session state.
A unique entry is created in the session state where all the dictionary content is copied (if an
in-process session provider is used) or serialized (if an out-of-process session provider is used).

The temporary data dictionary is loaded before any controller’s method is executed. When
this happens, however, the default provider tracks any element that is initially part of the
dictionary. Every time a new item is added to the dictionary or an item in the dictionary is
updated, the change is tracked too. At save time, items initially loaded but not further used
during the request are removed. As a result, most of the time items stored in TempData last
for two consecutive requests and then are gone.

 Chapter 7 Data Entry in ASP.NET MVC 339

Note Tailor-made to support PRG scenarios, the behavior of TempData is subject to a few
race conditions in ASP.NET MVC version 1. In particular, when you have interleaved or multiple
 consecutive redirects, it might happen that a new request kicks in and gets executed before one
of the redirects. This usually happens when the user opens a new tab or window in the browser
(where session state is shared) or when an AJAX request is made. In any of these cases, the
 content of TempData might be deleted before it is actually used by the target method.

To avoid that result, in ASP.NET MVC 2 a few changes were made. In particular, items are now
removed from the dictionary only if they have been read. Reading an item marks it for deletion;
ignoring an item leaves it in the dictionary with the understanding that if you don’t read it,
you are not interested in it and the item is there for the purpose of a successive request. A new
 method—the Keep method—has been added to give you a chance to undelete a previously
read item and keep it in the dictionary for later use. Finally, anytime you redirect, all items in the
 dictionary are undeleted. Overall, the new behavior keeps data in the dictionary longer, but it
gives you more flexibility and reduces the risk of weird race conditions.

Persisting Validation Messages
How can you leverage TempData to persist your validation message in the case of a redirect?
You have to manually copy the content of the dictionary into the TempData dictionary. In the
controller’s method that holds the results of the validation, you do as follows:

public ActionResult Update(CustomerViewModel model)

{

 // Invoke the service layer to update the customer

 var result = _service.UpdateCustomer(model);

 if (!result.IsValid)

 {

 ModelState.AddModelError(result.ValidationResults);

 // Persist validation messages

 TempData["ModelState"] = ViewData.ModelState;

 return RedirectToAction("Edit", new RouteValueDictionary(new { id = model.Id });

 }

.
 .
 .

}

The name of the item you add to TempData is arbitrary, but ModelState is a commonly used
name. Next, you must ensure that the redirected action method knows about any model
state–related content it has to process. Any action method will load data into the TempData
dictionary, but in this case an extra step is required—loading model state information into
the ModelState collection:

[ActionName("Edit"), AcceptVerbs(HttpVerbs.Get)]

public ActionResult EditViaGet(string id)

{

 // Reload the model state if any

 var modelState = TempData["ModelState"] as ModelStateDictionary;

340 Part III Programming Features

 if (modelState != null)

 ViewData.ModelState.Merge(modelState);

 // Prepare the view

.
 .
 .

 return View("Edit");

}

An interesting extension to this solution is making it an action filter. In this way, you can save
yourself from the extra code just shown and reduce it to just an attribute of the controller’s
method, as shown here:

[ActionName("Edit"), AcceptVerbs(HttpVerbs.Get), ModelState(Entry="ModelState"]

public ActionResult EditViaGet(string id)

{

.
 .
 .

}

The name and syntax of the attribute ModelState are arbitrary. I’ll return to action filters in
Chapter 11, “Customizing ASP.NET MVC.”

Redisplaying Attempted Values
The screen following a failed validation should display all attempted values so that the user
can fix the faulty ones. Doing this has never been a problem in Web Forms thanks to the
view state. In ASP.NET MVC, though, you should ideally take care of that yourself in much
the same way you used to in classic Active Server Pages (ASP). HTML helpers such as TextBox,
however, can retrieve attempted values from the model state. But who writes attempted
 values to the model state, and when? Consider the following code in a controller’s method:

// Filling the model manually (not using automatic model binding...)

customer.Country = Request.Form["Country"];

.
 .
 .

// Validating

if (!customer.IsValid)

{

 ModelState.AddModelError("Country", "Invalid country.");

.
 .
 .

}

This code works just fine in ASP.NET MVC 2, but it might give you problems in an ASP.NET
MVC 1 application. In particular, combined with the controller’s snippet just shown, the
 following code will get a null reference exception in ASP.NET MVC 1:

<%= Html.TextBox("Country", ViewData.Model.Country,

 new Dictionary<string, object>() { { "class", "textBox" } })%>

 Chapter 7 Data Entry in ASP.NET MVC 341

The TextBox helper, in fact, assumes that if an error is found for the field “Country”, the
 attempted value entered by the user also should be available somewhere. If this is not the
case, it throws an exception.

Nothing that bad would happen if you used model binding either through the
TryUpdateModel method of the controller class or the method’s signature. If you don’t
go through model binding, you have to explicitly create a wrapper object that contains
 attempted values. Here’s the code you need:

// Filling the model manually...

customer.Country = Request.Form["Country"];

.
 .
 .

// Validating

if (!customer.IsValid)

{

 ModelState.AddModelError("Country", "Invalid country.");

 ModelState.SetModelValue("Country", ValueProvider["Country"]);

.
 .
 .

}

The SetModelValue method adds information to the model state by reading the matching
entry in the controller’s value provider. The ValueProvider object of the controller is
a component that groups all posted values regardless of their origin.

Note If you don’t use a stock HTML helper such as TextBox, you might not need the extra call
to SetModelValue. You can use plain HTML literals and ensure the invalid value is retrieved and
displayed in some way through your own algorithm.

Temporary Messages
Although error messages should stay up until the user fixes them, success messages are
 desirable on one end and boring on the other. Upon completion of an update operation, for
instance, you want to notify the user of the successful operation. At the same time, though,
you don’t want the message to be either a pop-up message box or a static message. With
a bit of help from JavaScript, you can create temporary messages. I use temporary messages
mostly for success messages, but nothing prevents you from using them in other situations.

// Validating

if (!customer.IsValid)

{

.
 .
 .

}

342 Part III Programming Features

else

{

 TempData["OutputMessage"] = "Successfully updated!";

.
 .
 .

}

You can store the message either in ViewData or TempData, depending on how you are
 rendering the view. You should opt for TempData if you are making use of the PRG pattern.

In the view, you proceed as follows:

<% String msg = TempData["OutputMessage"] as String; %>

.
 .
 .

 <%= msg %>

To hide the message at some point, you need some script code; nothing special, just
a client-side timer:

<script type="text/javascript">

 var timer;

 $(document).ready(function() {

 timer = window.setInterval("clearMsg()", 2000);

 });

 function clearMsg() {

 $("#UpdateMsg").text("");

 window.clearInterval(timer);

 }

</script>

The preceding code uses the jQuery library to activate a two-second timer upon document
loading. Upon expiration, the message is cleared.

Data Annotations and Validators
ASP.NET MVC 2 includes full support for data annotations, which are a complete set of
 attributes for annotating a class from a variety of angles, including validation. In Chapter 6,
I covered data annotation validation attributes. In this chapter, you’ll see a demonstration
of how to use annotations to validate on the server and then on the client.

Preliminary Considerations Regarding Data Annotations
Data annotations are easy to use and quite effective. However, they’re designed to be
used essentially from within the controller’s code. As you’ll see in a moment, you use data
 annotations to decorate view model objects and rely on model binders to check metadata
and detect errors.

Is checking view model objects within the presentation layer where the controller code runs
adequate from a security and data-consistency perspective?

 Chapter 7 Data Entry in ASP.NET MVC 343

In general, the answer is no, but using data annotations might be acceptable in relatively
 simple cases where you don’t have complex and data-driven business rules. The point here
tracks back to the distinction I made in Chapter 6 between the view model and domain
 model. If they nearly coincide in your application—and it happens more often than you might
think—then using a single layer of validation on the server side in the controller methods
makes sense and turns out to be effective. Otherwise, you have the following options:

Implement a double layer of validation Basically, you map view model objects to the
controller’s methods and use data annotations to filter out incorrect input values. Next,
you copy data into domain objects and validate within the boundaries of the business layer.
This second layer of validation should occur in a service layer class to preserve separation of
 concerns. The service layer, in fact, is technically part of the business layer and, in this regard,
it’s acceptable that it runs queries against databases to implement business-specific rules.

Don’t use data annotation facilities To avoid having a double layer of validation (which
easily becomes three if you add JavaScript validation on the browser), the most sensible option
is dropping data annotation facilities completely. You pass your view model object as is to
the service layer and have the business logic perform all required checks, against input and
against business rules. As discussed in Chapter 6, you can still use data annotations to express
validation rules, but you won’t be leveraging the user interface facilities of ASP.NET MVC model
binders. In complex scenarios, though, where the business layer is located on a physically
separated tier, you might find that a double layer (one on the presentation tier and one on
the business tier) is still beneficial. Using this approach, some errors might be caught on the
presentation, thus saving you some costly roundtrips to another server.

Validation is a delicate part of the business logic, but it’s also an aspect that applies to input
data and then to the presentation layer. In the end, there’s no fixed rule to tell you where
to have validation and how to code it. I strongly recommend you go beyond the facilities of
data annotation metadata built around ASP.NET MVC controllers and don’t blindly consider it
the way to go just because Microsoft built it, it works great, and it is easy to use—because it
may not provide enough validation control for all situations.

Note Data annotation facilities like those I’ll be describing in the remainder of the chapter are
available only in ASP.NET MVC 2.

Metadata and Display
Data annotations are attributes defined in the System.ComponentModel.DataAnnotations
namespace. They can be used to attach metadata information to a class and its members.
Metadata can be of two main types: display and validation. Metadata is not executable code
per se; however, it provides information to specific pieces of executable code designed to
read and process metadata information.

344 Part III Programming Features

When it comes to data annotations in ASP.NET MVC 2, display metadata is consumed
 primarily by templated helpers that create an ad hoc user interface for editing or displaying
objects. Validation metadata, on the other hand, is used by model binders to perform a quick
but effective check on the validity of the object by applying the rules set in the metadata.

Table 7-1 shows most popular metadata attributes for decorating the user interface when
classes are rendered or edited.

TABLE 7-1 Quick list of display attributes in data annotations

Attribute Description

DataType Indicates the real type of the data, which might not be reflected by the .NET
Framework type system. Special types are from the DataType enumeration
and include EmailAddress, PhoneNumber, and Date.

Display Indicates the text for the label to use (if required) when displaying and
editing the property.

HiddenInput Indicates that the property is rendered to a hidden field. The property
can optionally be hidden from view, too.

UIHint Indicates the user control to be used for displaying or editing the value
of the property.

Scaffold Indicates whether the property has to be added to the scaffolding that
some UI tools might automatically create for display or editing purposes.

Combined with the validation attributes you already met in Chapter 6, display attributes form
an extremely powerful duo that makes creating input forms extremely quick and effective.

Important Without meaning to become a proverbial pain in the neck, I want to emphasize again
that although using data annotations to build display and validation functionality couldn’t be
 faster or more effective, from an architectural perspective this is not necessarily what you want in
your application—especially when you have to deal with dynamic and database-driven business
rules. They can be helpful and provide a start, but they are by no means a complete solution.

Evolution of Model Binding in ASP.NET MVC 2
A few changes occurred in ASP.NET MVC 2 regarding the internal architecture of the model
binding. These changes mostly made up for the data annotation support, but there’s also
some room left for custom extensions, including the possibility of plugging in other types
of metadata.

First, model binding still occurs through the DefaultModelBinder class. An instance of this class
is created whenever the DefaultBinder property of the ModelBinderDictionary class is invoked:

public IModelBinder DefaultBinder

{

 get

 {

 if (this._defaultBinder == null)

 this._defaultBinder = new DefaultModelBinder();

 return this._defaultBinder;

 }

 Chapter 7 Data Entry in ASP.NET MVC 345

 set

 {

 this._defaultBinder = value;

 }

}

As usual, you can change the default binder programmatically in global.asax or on a per-type
basis using attributes. (See Chapter 6.)

One of the most common reasons for writing a custom model binder is to add a validation
layer in it. In ASP.NET MVC 1, you had some support for it only if your class was
 implementing the IDataErrorInfo interface from the System.ComponentModel assembly.

public interface IDataErrorInfo

{

 string Error { get; }

 string this[string columnName] { get; }

}

In ASP.NET MVC 1, the DefaultModelBinder first checks whether the class implements the
IDataErrorInfo interface. If so, the indexer property is invoked for each property in the class
and any error messages are reported to the model state automatically. In addition, the
default binder checks for the global Error property on any bindable class that implements
IDataErrorInfo. If a general-purpose, non-property-specific validation message is present, it
is added to the model state.

In ASP.NET MVC 2, this behavior remains the first option; however, a second and much more
flexible option is offered if your class doesn’t implement IDataErrorInfo or if no error was
detected through IDataErrorInfo. The default binder will look for registered validators and
metadata providers. Let’s have a look at the source code of the OnModelUpdated method
on the default binder class:

protected virtual void OnModelUpdated(

 ControllerContext controllerContext,

 ModelBindingContext bindingContext)

{

 // This code is nearly the same as in ASP.NET MVC 1

 var model = bindingContext.Model as IDataErrorInfo;

 if (model != null)

 {

 string error = model.Error;

 if (!string.IsNullOrEmpty(error))

 bindingContext.ModelState.AddModelError(bindingContext.ModelName, error);

 }

 // Here's the second option in ASP.NET MVC 2

 if (IsModelValid(bindingContext))

 {

 foreach (var validator in

 bindingContext.ModelMetadata.GetValidators(controllerContext))

 {

 foreach (var result in validator.Validate(null))

 bindingContext.ModelState.AddModelError(...);

 }

 }

}

346 Part III Programming Features

As you can see, a bunch of validators can be registered with ASP.NET MVC, and they will be
called in sequence to validate the model. A validator is a class that inherits from ModelValidator.

public abstract class ModelValidator

{

 public virtual IEnumerable<ModelClientValidationRule> GetClientValidationRules();

 public abstract IEnumerable<ModelValidationResult> Validate(object container);

 protected internal ControllerContext ControllerContext { get; private set; }

 protected internal ModelMetadata Metadata { get; private set; }

}

A validator has two methods—one for validating the state of a server-side object and one
for validating input available within the browser. A validator works by checking real values
stored in the object against provided metadata. In ASP.NET MVC 2, model metadata is a set
of information defined in the public class ModelMetadata. Only one metadata provider is
registered by default, and it is the DataAnnotationsModelMetadataProvider class. Metadata
information based on data annotations are then processed by up to three default validators:
DataAnnotationsModelValidatorProvider, ClientDataTypeModelValidatorProvider, and
DataErrorInfoModelValidatorProvider.

As far as model binding is concerned, the default behavior in ASP.NET MVC 2 is that data
annotation attributes are used to express display and validation metadata for a type. These
annotations are validated by the default validators (on both the browser and the server side)
and any errors are reported to the model state.

Validating Annotated Objects
Let’s experience the combined power of data annotation metadata, templated helpers,
and model binders in ASP.NET MVC 2. The following class is a typical view model class used
to gather data being posted by an input form. The class is expected to add a new memo
into a system. The memo includes an automatically generated ID, a title, the owner’s name,
the priority level, the due date, an e-mail address to use to follow up, and a flag indicating
whether or not the memo has to show up in the calendar.

public class MemoViewModel

{

 [HiddenInput(DisplayValue = false)]

 public int Id { get; set; }

 [Required]

 [DisplayName("Title")]

 [StringLength(20, ErrorMessage = "Too long, cut your text.")]

 public String Title { get; set; }

 [Required]

 [DisplayName("Owner")]

 Chapter 7 Data Entry in ASP.NET MVC 347

 [RegularExpression(@"^[a-zA-Z''-'\s]{1,10}$")]

 public String OwnerName { get; set; }

 [Required]

 [Range(1,5)]

 [DisplayName("Priority")]

 public int Priority { get; set; }

 [Required]

 [DisplayName("Due by")]

 [DataType(DataType.Date)]

 public DateTime DueBy { get; set; }

 [DisplayName("Show on calendar")]

 public bool ShowOnCalendar { get; set; }

 [RegularExpression(@"\w+([-+.']\w+)*@\w+([-.]\w+)*\.\w+([-.]\w+)*")]

 [DataType(DataType.EmailAddress)]

 [DisplayName("Follow up")]

 public String FollowupEmail { get; set; }

}

To arrange an input form around this class, here’s what you can do:

<h2>Create a new memo</h2>

<hr />

<% using (Html.BeginForm()) { %>

 <%= Html.ValidationSummary(true) %>

 <div>

 <fieldset>

 <legend>Memo</legend>

 <p>

 <%= Html.EditorForModel() %>

 </p>

 <p>

 <input type="submit" value="Save" />

 </p>

 </fieldset>

 </div>

<% } %>

The EditorForModel HTML helper is a shortcut for editing the entire object being passed as
the model in the view page:

<%@ Page ... Inherits="System.Web.Mvc.ViewPage<MemoViewModel>" %>

From a controller action, you ask to render the form just shown and what you get looks like
Figure 7-7.

348 Part III Programming Features

FIGuRE 7-7 An input form automatically created by the editor templates

When you submit the form, any content will be bound to an HTTP POST–enabled action, as
shown here:

[HttpPost]

public ActionResult Index(MemoViewModel model)

{

 return View();

}

Note In ASP.NET MVC 2, a new set of attributes has been introduced to make it simpler for
you to restrict the controller’s action method to certain HTTP verbs. The AcceptVerbs attribute
 introduced in ASP.NET MVC is still the repository of any code that selects a method for execution.
However, its use is now simplified by more direct and parameterless wrapper attributes such
as HttpPost, HttpGet, HttpPut, and HttpDelete. Which approach you use is purely a matter
of preference because HttpPost and the others are implemented in terms of the underlying
AcceptVerbs attribute. See Chapter 4, “Inside Controllers,” for more information.

During the binding process, the actual content of the data being mapped to the model is
checked carefully against the metadata in the class definition. Errors are reported as shown
in Figure 7-8.

 Chapter 7 Data Entry in ASP.NET MVC 349

FIGuRE 7-8 Posting invalid input data according to specified metadata

Regular expressions and range validators work just fine when a comment is required
to explain the behavior of the DataType attribute. When DataType refers to a value
of a non-String type such as DateTime, validation is included. When DataType refers to
a special meaning of a String type, no validation is taken into account; in this regard, the
DataType attribute works as a plain display attribute. For example, using DataType[DataType.
EmailAddress] ensures that any content is rendered as a hyperlink, but not that the content
is checked against the typical e-mail address format. If you want validation, you have to add
a regular expression, as in the code snippet shown earlier.

Adding Custom Attributes
In Chapter 6, I briefly talked about using a custom attribute. Let’s resume that discussion and
see how easy it can be to integrate a new attribute with the data annotation infrastructure.
Consider the EvenNumber attribute:

[AttributeUsage(AttributeTargets.Property, AllowMultiple = true, Inherited = true)]

public class EvenNumberAttribute : ValidationAttribute

{

 public EvenNumberAttribute()

 : base(_defaultErrorMessage)

 { }

 private const string _errorMessage = "The value must be an exact multiple of {0}.";

 public bool MultipleOf4 { get; set; }

350 Part III Programming Features

 public override bool IsValid(object value)

 {

 if (value == null)

 return false;

 // If here, it is a number (otherwise, it would have been trapped

 // by the model binder)

 var number = (double) value;

 if (MultipleOf4)

 return (number % 4) == 0;

 return (number % 2) == 0;

 }

 public override string FormatErrorMessage(string name)

 {

 return String.Format(CultureInfo.CurrentUICulture,

 ErrorMessageString, (MultipleOf4 ?4 :2));

 }

}

The attribute checks whether the value associated with the property is an even number.
Note that the model binder performs a preliminary check on the type before invoking the
attribute:

[EvenNumber]

[DisplayName("Maximum number of days to wait")]

public double MaxNumberOfDays { get; set; }

If the value being passed cannot be converted to the declared type of the property—in this
case, double—the attribute is not invoked and the user receives a default message stating
that the value is invalid for the field. Otherwise, the control is passed on to the attribute
and the error message, if any, can be more specific, as in Figure 7-9.

FIGuRE 7-9 A custom validation attribute in action

All the code we’ve considered so far runs on the server side in the context of a controller
 action method. It would be nice if some work could be done directly on the browser side to
save some network roundtrips at least for the most common (and easy-to-fix) mistakes.

 Chapter 7 Data Entry in ASP.NET MVC 351

Client-Side Validation
Web applications these days can’t get by without a bit of script code in every page that
makes the interaction with the user seamless. Validation is an excellent fit for some scripting.
The good news is that the same set of annotations you use for server-side validation can be
used to emit some ad hoc script that runs in the browser.

Enabling Client Validation
To enable client validation, you need a bunch of JavaScript files in the page to bring in all the
dynamic validation capabilities:

<script src="/Scripts/jquery-1.3.2.min.js" type="text/javascript"></script>

<script src="/Scripts/jquery.validate.min.js" type="text/javascript"></script>

<script src="/Scripts/MicrosoftMvcValidation.js" type="text/javascript"></script>

Next, you need to ensure that you invoke the EnableClientValidation method from the HTML
helper class right before the form tag:

<%= Html.ValidationSummary(true) %>

<% Html.EnableClientValidation(); %>

<% using (Html.BeginForm()) { %>

 <%=Html.EditorForModel() %>

 <p>

 <input type="submit" value="Save" />

 </p>

<% } %>

The final page served to the user will contain some JSON metadata—a faithful copy of the
annotations in the object being edited—and registers a few handlers for user events such as
blur, click, and submit. As a result, your form will never post if a required field is left empty.

Validators for Custom Attributes
Client validation doesn’t work for custom attributes. The reason is that the custom attribute
lacks a client-side validator module. A client validator currently exists for the following
 attributes: StringLength, Range, Required, and RegularExpression. For any other attribute you
intend to use on the client, a new class is expected.

public class EvenNumberValidator : DataAnnotationsModelValidator<EvenNumberAttribute>

{

 bool _multipleOf4;

 string _message;

 public EvenNumberValidator(ModelMetadata metadata,

 ControllerContext context, PriceAttribute attribute)

 : base(metadata, context, attribute)

 {

 _multipleOf4 = attribute.MultipleOf4;

 _message = attribute.ErrorMessage;

 }

352 Part III Programming Features

 public override IEnumerable<ModelClientValidationRule> GetClientValidationRules()

 {

 var rule = new ModelClientValidationRule {

 ErrorMessage = _message,

 ValidationType = "evenNumber"

 };

 rule.ValidationParameters.Add("multipleOf4", _multipleOf4);

 return new[] { rule };

 }

}

At a minimum, the validator class will override the method GetClientValidationRules to emit
metadata for a validation rule that will be checked on the client. Note that the validator just
emits metadata that describes which fields to validate using which parameters. Metadata
is converted to a JSON string and injected in the page. The script that consumes the
 metadata can be plugged in at will. By default, it is the jQuery Validate library. For a custom
 validation attribute, you also are responsible for writing the script code that will do the actual
validation.

<script type="text/javascript">

 Sys.Mvc.ValidatorRegistry.validators["evenNumber"] = function(rule) {

.
 .
 .

 return function(value, context) {

 // Logic goes here

.
 .
 .

 }

}

</script>

Finally, you must register the validator for the custom validation attribute. You can do that in
global.asax, as shown here:

DataAnnotationsModelValidatorProvider.RegisterAdapter(

 typeof(EvenNumberAttribute), typeof(EvenNumberValidator));

In the end, ASP.NET MVC 2 brings to the table the same idea that is the basis of another
popular open-source validation framework that many developers use—the xVal framework.
The idea is to use the same set of annotations to decorate classes and have the framework
use the same metadata to validate objects both on the server and the client.

ASP.NET MVC 2 uses data annotations for server-side validation and the jQuery Validator
plug-in for client validation. This is only the default choice, though.

 Chapter 7 Data Entry in ASP.NET MVC 353

A Word or Two About xVal
As mentioned, xVal is an open-source validation framework for ASP.NET MVC that you can
download from http://xval.codeplex.com. The overall idea is nearly the same as what you get
natively from ASP.NET MVC, with the significant consideration that xVal came first.

In xVal, you decorate your classes using data annotations and use an ad hoc validation runner
to validate object instances. (A method for validating an object against annotations is being
added to data annotations in the .NET Framework 4.)

The xVal library operates on the server side in the context of the service layer. Any errors
reported by the runner are packaged into a custom exception object that the controller will
catch.

public ActionResult Edit(Customer customer)

{

 try

 {

 _service.Update(customer);

 }

 catch(RulesException exception)

 {

 exception.AddModelStateErrors(ModelState, "update");

 return View();

 }

 return RedirectToAction("Index")

}

The RulesException type is defined within the library and features the AddModelStateErrors
helper method to copy reported errors to the model state.

To get client-side validation, you link jQuery, jQuery Validate, and the xVal-specific wrapper
library.

<head>

 <script src="/Scripts/jquery-1.3.2.js"></script>

 <script src="/Scripts/jquery.validate.js"></script>

 <script src="/Scripts/xVal.jquery.validate.js"></script>

</head>

You also need to bring into the project the xVal HTML helpers and invoke them to emit
proper script code in the page:

<%= Html.ClientSideValidation<Customer>("update") %>

If you don’t like jQuery Validate, you can create (or reuse) an xVal plug-in for any other
 validation library you want to use. For more information, see the documentation at
http://xval.codeplex.com.

354 Part III Programming Features

As a final point, consider that with both xVal and ASP.NET MVC 2 client validation you
get automatic fallback to server-side validation if JavaScript is not available on the user’s
machine.

Note Should you use xVal or should you go for native client-side validation in ASP.NET MVC 2?
In terms of functionality, xVal is probably slightly richer and more consolidated. (Consider
that xVal was announced before the first official release of ASP.NET MVC 1.) However, for the
core part the libraries are equivalent. In many organizations, developers are forced to pick
up products with active support and open-source products are deliberately avoided. In such
 scenarios, the client-validation capabilities of ASP.NET MVC 2 are not likely to disappoint you.

Summary
Input forms are common in any Web application, and ASP.NET MVC applications are no
 exception. In Web Forms, though, writing input forms was far easier because of server
 controls and automatic data binding. ASP.NET MVC uses much less abstraction and requires
you to write view pages using more HTML and JavaScript. This inevitably has an impact on
input forms, making it harder and more boring to create them.

For a while, there was a sentiment in the industry that ASP.NET MVC was not well suited
to support data-driven applications because it required a lot of data entry and validation
to do so. Ultimately, ASP.NET MVC measures up nicely to the task. It does use a different set
of tools than Web Forms, but it is still effective and to the point.

ASP.NET MVC 2 improves the infrastructure for input forms by adding templated helpers
and client-side validation. By combining view model objects, templated editors, and
 validators, you can build effective data entry pages in a fraction of the time it would have
taken you in ASP.NET MVC 1.

 355

Chapter 8

The ASP.NET MVC Infrastructure
A multitude of rulers is not a good thing. Let there be one ruler, one king.

—Homer

ASP.NET MVC works and thrives on top of the classic ASP.NET infrastructure. Typically, the
infrastructure of ASP.NET includes a few built-in HTTP handlers and HTTP modules, such as
those for authentication, output caching, session state, and a bunch of container or service
classes such as HttpContext and HttpRuntime. To a large extent, ASP.NET MVC can be
 considered as a specialization of the classic ASP.NET runtime environment that just supports
a different application and programming model.

ASP.NET MVC applications have full access to any built-in components that populate the
ecosystem of ASP.NET, including Cache, Session, OutputCache, and the authentication layer.
Nothing is different in ASP.NET MVC in the way in which these components can be used.
So what’s really the purpose of this chapter?

Because ASP.NET MVC is essentially an extension of the ASP.NET runtime, it comes with its
own runtime shell—inside of which, you’ll find that your perception of things is a bit different
and features are more coarse-grained. Where traditional ASP.NET controls abstract much of
the underlying markup, ASP.NET MVC encourages you to work with the markup nuts and
bolts directly. From this perspective, the infrastructure of an ASP.NET MVC application is
made of aspects that can be considered to be system oriented, such as authentication and
routing as well as aspects that were originally catalogued as programming features, such as
error handling and localization. Among other things, error handling is related to forms of
Search Engine Optimization (SEO), and localization is a feature that is becoming so important
and widely used as to justify a full discussion about the options and the tools you have
 available to make it happen.

Finally, the .NET developer of the next decade—whether that person is a Web, Windows, or
WPF developer—can’t avoid getting at least a working knowledge of dependency injection
and related Inversion of Control (IoC) container frameworks. From the perspective of
ASP.NET MVC applications, therefore, exposing a global object factory that can traverse
an offline catalog of dependencies and resolve them to a graph of objects is a definite plus,
if not a must-have capability.

In a nutshell, this chapter is a collection of distinct and, to some extent, self-contained
 topics—each touching on a feature that many ASP.NET MVC applications out there already
have or are likely to have in the future.

356 Part III Programming Features

Routing
In Chapter 2, “The Runtime Environment,” I covered the basics of URL routing and ASP.NET
MVC routes. In this chapter, I delve deeper into some specific aspects of using and defining
routes, such as ordering, constraints, SEO, testing, and—more importantly—design of URLs.

Dealing with Routes
Ultimately, a route is a pattern that the URL-routing HTTP module attempts to recognize
in the URL of the request being processed. If the URL-routing HTTP module finds a match,
the selected route is picked up and processed in some way. At a minimum, a route comes
with a schema for the URL and a route handler that decides which HTTP handler for the
 associated action is required.

Let’s start by reviewing how a route is formally defined in the system.web.routing
namespace, which is now part of the ASP.NET framework and no longer a feature specific
to ASP.NET MVC.

Processing a Route
A route is defined as an instance of the type Route, defined as follows. Note that the base
class RouteBase simply provides an abstract definition of the two overridden methods you
find in the following code:

public class Route : RouteBase

{

 // Constructors

 public Route(string url,

 IRouteHandler routeHandler);

 public Route(string url,

 RouteValueDictionary defaults,

 IRouteHandler routeHandler);

.
 .
 .

 // Methods

 public override RouteData GetRouteData(

 HttpContextBase httpContext);

 public override VirtualPathData GetVirtualPath(

 RequestContext requestContext,

 RouteValueDictionary values);

 protected virtual bool ProcessConstraint(

 HttpContextBase httpContext,

 object constraint,

 string parameterName,

 RouteValueDictionary values,

 RouteDirection routeDirection);

 Chapter 8 The ASP.NET MVC Infrastructure 357

 // Properties

 public RouteValueDictionary Constraints { get; set; }

 public RouteValueDictionary DataTokens { get; set; }

 public RouteValueDictionary Defaults { get; set; }

 public IRouteHandler RouteHandler { get; set; }

 public string Url { get; set; }

}

In summary, a route defines a list of URLs that are acceptable to an ASP.NET MVC application.
If a requested URL matches any of the patterns represented by existing routes, the URL is
 further processed to extract information and control is yielded to the route handler object.

When you define a route in the global.asax file, you specify the expected layout of any
matching URL as well as required strings (such as {controller} and {action} in the default
route), default values, constraints, and data tokens. Most of the time, you use the predefined
MapRoute extension of the RouteCollection class to define your routes. Here’s an alternative
way that lets you address any possible member of the Route class. Note that the following
code is similar to the code used by MapRoute internally:

var stdRoute = new Route("{controller}/{action}/{id}", new MvcRouteHandler());

stdRoute.Defaults = new RouteValueDictionary

 {

 { "controller", "Home" },

 { "action", "Index" },

 { "id", ""}

 };

stdRoute.DataTokens = new RouteValueDictionary

 {

 { "format", "short" }

 };

routes.Add("Default", stdRoute);

As you might have guessed, the code has nearly the same effect as the default MapRoute call
shown next:

routes.MapRoute("Default",

 "{controller}/{action}/{id}",

 new { controller = "Home", action = "Index", id = "" });

The only difference is that you can’t assign any content to DataTokens via MapRoute.
The content of the DataTokens collection is values that get passed to the route handler
and optionally are used to process the request. The default route handler just ignores data
 tokens; a custom route handler, however, might use them to make decisions about the
HTTP handler to use to serve the request. Data tokens are not used to determine whether
or not an incoming URL matches a given route. Along with constraints and route values,
data tokens are packaged in the RouteData structure and belong to the RequestContext
object.

358 Part III Programming Features

Route Handlers
Each route is associated with a route handler. A route handler is a class that implements
IRouteHandler.

public interface IRouteHandler

{

 IHttpHandler GetHttpHandler(RequestContext requestContext);

}

Any route that is added through the MapRoute extension method is bound to the default
MvcRouteHandler class. This class doesn’t do anything special and is limited to returning
a reference to the default ASP.NET MVC HTTP handler:

public class MvcRouteHandler : IRouteHandler

{

 // Methods

 protected virtual IHttpHandler GetHttpHandler(RequestContext requestContext)

 {

 return new MvcHandler(requestContext);

 }

 IHttpHandler IRouteHandler.GetHttpHandler(RequestContext requestContext)

 {

 return this.GetHttpHandler(requestContext);

 }

}

A route handler is a sort of factory and is responsible for determining the HTTP handler that
will serve the request. Any requests that match a given route will be mapped to the handler
selected by the route handler looking at the information passed through RequestContext,
including data tokens.

The ASP.NET MVC framework doesn’t offer many route handlers, and this is probably a sign
that the need to use a custom route handler is not that common. Yet, the extensibility point
exists and, in case of need, you can take advantage of it.

StopRoutingHandler is an alternative route handler associated with any routes created
through the IgnoreRoute extension method. All it does is throw a NotSupported exception
when its GetHttpHandler method is invoked.

Another route handler available is PageRouteHandler, which defines how a URL maps
to a physical file. Note that this class is defined in the system.web assembly for the .NET
Framework 4 and is not available to applications compiled for any earlier version of the
framework. You typically use the PageRouteHandler via the MapPageRoute extension
method:

var pageRoute = new Route("SalesReport/{locale}/{year}",

 new PageRouteHandler("~/sales.aspx"));

routes.Add("Sales", pageRoute);

 Chapter 8 The ASP.NET MVC Infrastructure 359

The PageRouteHandler object specifies the virtual path of the physical file and optionally
 determines whether authorization rules for the physical URL have to be checked. To deal with
authorization, you use one of the constructor’s overloads.

The PageRouteHandler has been added primarily for making routing support easier in
ASP.NET Web Forms 4. However, you can use it also from within ASP.NET MVC to bind
a route to some legacy URL.

Using Route Constraints
Most of the time, the pattern defined by the route is sufficient to decide whether or not
a given URL matches. However, this is not always the case. Consider, for example, the
situation in which you are defining a route for recognizing requests for product details.
You want to confirm the following two aspects:

n First, you want to be sure that the incoming URL is of the type http://server/{ controller}/
{productId}, where {controller} identifies the ASP.NET MVC controller to invoke and
 {productId} indicates the ID of the product to retrieve.

n Second, you also want to be sure that no invalid product ID is processed. You probably
don’t want to trigger a database call right from the URL routing module; however,
at the very least, you want to rule out as early as possible any requests that propose
a product ID in an incompatible format.

Regular expressions are a simple way to filter requests to see if any segment of the URL
is acceptable. Here’s a sample route that keeps URLs with a string product ID off the
application:

routes.MapRoute(

 "ProductInfo",

 "{controller}/{productId}/{locale}",

 new { controller = "Product", action = "Index", locale="en-us" },

 new { productId = @"\d{8}",

 locale = ""[a-z]{2}-[a-z]{2}" }

);

The fourth parameter to the MapRoute extension method is a dictionary object that sets
regular expressions for productId and locale. In particular, the product ID must be a numeric
sequence of exactly eight digits, whereas the locale must be a pair of two-letter strings
 separated by a dash. The filter doesn’t ensure that all invalid product IDs and locale codes
are stopped at the gate, but at least it cuts off a good deal of work.

An invalid URL is presented as an HTTP 404 failure and is subject to application-specific
 handling of HTTP errors. Figure 8-1, however, shows the effect of a customized way of
 handling some HTTP errors that you can implement in ASP.NET MVC on top of routes.
(I’ll get into the related details in the “Error Handling” section.)

360 Part III Programming Features

FIGuRE 8-1 The URL matches the route pattern but fails on constraints.

In addition to using MapRoute, you can also use the Constraints property on the Route class
to set a constraint, as shown here:

myRoute.Constraints = new RouteValueDictionary {

 { "productId", @"\d{8}" },

 { "locale", "[a-z]{2}-[a-z]{2}" }

};

If a regular expression is not enough to express the logic you need for deciding if
an incoming URL is valid, you resort to constraint objects. As you saw in Chapter 2, a route
 constraint is a class that implements the IRouteConstraint interface. The interface includes
just one method—Match—which returns a Boolean.

The following example shows a constraint that checks whether a parameter of the URL
matches a set of predefined values. In particular, the constraint makes requests bounce back
for customers that are not in the predefined list of countries.

public class CountryConstraint : IRouteConstraint

{

 public CountryConstraint(IList<String> cachedCountries)

 {

 _cachedCountries = cachedCountries;

 }

 private readonly IList<String> _cachedCountries = null;

 public bool Match(HttpContextBase httpContext,

 Route route,

 string parameterName,

 Chapter 8 The ASP.NET MVC Infrastructure 361

 RouteValueDictionary values,

 RouteDirection routeDirection)

 {

 bool result = true;

 // Adding logic here might have an impact on testing.

 var countries = (IList<string>) (_cachedCountries ??

 httpContext.Cache[Registry.CountryListCacheEntry]);

 if (countries == null)

 return false;

 if ((routeDirection == RouteDirection.IncomingRequest) &&

 (parameterName.ToLower(CultureInfo.InvariantCulture) == "countryname"))

 {

 var countryName = (string)values["countryName"];

 if (!countries.Contains(countryName))

 result = false;

 }

 return result;

 }

}

The list of countries can be provided as an argument to a constraint constructor, which is
good for testability. By default, it is retrieved via a registry object that caches it at application
startup. Here’s how to declare the constraint:

routes.MapRoute(

 "CustomersForCountry",

 "{controller}/{countryName}",

 new { controller = "Customer", action = "Index" },

 new { countryName = new CountryConstraint(cachedCountries) }

);

The cachedCountries parameter is passed as an argument to the caller of MapRoute:

public static void RegisterRoutes(RouteCollection routes, IList<String> cachedCountries)

{

.
 .
 .

}

A URL that doesn’t map to any routes originates an HTTP 404 error; a URL that maps to
a route, but contains invalid values, will be handled by the controller.

Testing Routes
Like any other part of an ASP.NET MVC application, routes can be the subject of some unit
testing. In particular, you might want to check whether a given URL is matched to the right
route and if route data is extracted properly.

To test routes, you must reproduce the global.asax environment and begin by invoking the
RegisterRoutes method. The RegisterRoutes method populates the collection with available
routes.

362 Part III Programming Features

[TestMethod]

public void TestIfProductRoutesWork()

{

 var routes = new RouteCollection();

 MvcApplication.RegisterRoutes(routes);

 RouteData routeData = null;

 routeData = GetRouteDataForUrl("~/product/sds", routes);

 // Test whether the right route was found

 Assert.AreEqual(((Route) routeData.Route).Url, "{controller}/{action}/{id}");

}

The GetRouteDataForUrl method in the test is a local helper defined as follows:

private static RouteData GetRouteDataForUrl(string url, RouteCollection routes)

{

 var httpContextMock = MockRepository.GenerateMock<HttpContextBase>();

 httpContextMock.Expect(c => c.Request.AppRelativeCurrentExecutionFilePath).Return(url);

 RouteData routeData = routes.GetRouteData(httpContextMock);

 Assert.IsNotNull(routeData, "Should have found the route");

 return routeData;

}

The method is expected to invoke GetRouteData to get information about the requested
route. Unfortunately, GetRouteData needs a reference to HttpContextBase, where it
places all inquiries about the request. In particular, GetRouteData needs to invoke
AppRelativeCurrentExecutionFilePath to know about the virtual path to process.

By mocking HttpContextBase to provide an ad hoc URL, you completely decouple the route
from the runtime environment and can proceed with assertions.

The sample code shown earlier uses Rhino Mocks to create mocks of objects.
(See http://www.ayende.com/projects/rhino-mocks.aspx.) I’ll return to the topic of
mocking frameworks in Chapter 10, “Testability and Unit Testing.”

Keeping an Eye on SEO
One of the reasons to pay more attention to routes is to enforce a set of rules that can
 increase the appeal of your site to search engines and end users. Search Engine Optimization,
or SEO for short, has become a precise goal of most Web projects.

At its root, SEO consists of adding metadata to pages, reviewing URLs, and restructuring
 content with a particular focus on cross-page links, error pages, use of JavaScript, redirects,
and images. SEO considers how search engines work and what people search for. The idea
is to make it easier for popular search engines to find your pages and rank your pages
higher with reference to specific keywords. All in all, URL design, unique content, and a wise
 redirection strategy are all key achievements on the way to getting the most out of search
engines. Let’s see how to accomplish this in ASP.NET MVC.

 Chapter 8 The ASP.NET MVC Infrastructure 363

Devising Routes and URLs
I still remember very well when Microsoft Windows 95 introduced long file names and, with
that, the ability to give files and directories names up to 255 characters. It’s hard to believe
if you never programmed in the era of 16-bit applications, but there really was a time when
you had to express disk resources using an 8+3 notation—that is, only 8 characters for the
name plus 3 for the extension. All developers welcomed long file names in Windows 95
as the long-awaited way to give files more readable and sensible names.

In the beginning of the Web era, URL names were chosen much like file names, with the goal
of representing the intended resource in a sensible way. Then Content Management Systems
(CMS) started mechanizing the process of URL creation. To generalize the management of
some content over the Web, CMS applications began using a base URL plus some variable
parameters appended to the query string. URLs like the following one were common:

http://code.yourserver.com/bin/10day-ITXX0067

 ?cm_ven=myapp_it&cm_cat=citypage&cm_ite=weather&cm_pla=10day&cm_fmt=metrics

These URLs perfectly fulfill their mission, but they can’t really be understood, let alone
 remembered. Are URLs something that users should care about? Ideally, they should not.
However, just as for files and directories, URLs are visible and, to some extent, they do matter.
In the end, URLs can even be created and managed by the application in any way that suits
the tool and developers as long as they can be exposed to the user in a more sensible way.
This is just what routes ultimately do.

A URL scheme must enforce a few characteristics, such as readability and uniqueness.
A readable URL is a URL that is clear about what it points to. In addition, a readable URL
 results from a breadcrumb. Breadcrumb navigation refers to presenting the URL as a
 sequence of segments much like directories in a file system path. However, each segment
points to a page that is meaningful for the system and is not simply showing the content
of a virtual directory. Here’s an example:

http://yourserver.com/weather/italy/lazio/north/today/afternoon/

If you visit the preceding URL, you’ll be shown forecasts for the afternoon, but if you remove
two trailing segments, you’ll get forecasts for the north of the specified region for a default
period. If you stop at the country level, instead, you’ll get an overview of the situation for the
whole country and for the default period.

Another key principle of URL design and organization is that each URL must be unique.
Having the need to reference the same URL many times is fine, but you manage to resolve
the reference via a permanent redirect. Uniqueness has a significant impact on SEO, and I’ll
return to that point in a moment.

The Trailing Slash
For a long time, I wondered whether using or not using a trailing slash in an ASP.NET
URL that doesn’t directly refer to a page would make any difference. For the Web server,

364 Part III Programming Features

it actually does make a small difference. If the URL ends with a slash, the Web server
 understands you’re requesting a directory. If the URL doesn’t end with the slash, ASP.NET
Web Forms performs an automatic HTTP 301 permanent redirect to the same URL but with
a trailing slash. So in ASP.NET, whether you’re using the trailing slash or not, it always results
in a single URL being used. And if you keep the slash, you also save yourself a redirect.

There are some SEO concerns related to the trailing slash. In particular, a search engine
 incorporates a filter that detects and penalizes duplicate content in search results. Duplicate
content is any page (that is, any distinct URL) in the search results that actually is reckoned
to serve the same content as others. To serve the most relevant content possible to the user,
a search engine tries to rank lower the pages that seem nearly the same as others. But this
 process can accidentally reduce the rank of good pages. Permanent redirects, such as those
occurring for non-file URLs without a trailing slash, are a way to share more information
about pages with a search engine.

What about ASP.NET MVC and the routing system? Should you force a trailing slash?

Ultimately, an ASP.NET MVC application is entirely responsible for its URLs and, subsequently,
for what a search engine will ask for. In a new application, it’s ultimately up to you because
your routes determine how the request is processed. Helpers used to generate URL in the
markup tend to avoid trailing slashes, so let’s say that not having trailing slashes is a more
common solution in ASP.NET MVC. But keep in mind that the other approach is equally valid.
In ASP.NET MVC, it’s up to you to resolve (or not resolve) URLs with and without the trailing
slash in the same way. You ultimately decide about your page rank.

If you’re porting an existing site to ASP.NET MVC, you might have many legacy URLs to
maintain. You can install a custom route handler and permanently redirect (HTTP 301) from
legacy URLs to new URLs. This approach works, but in practice it might take weeks for the
search engine to physically update the internal tables of links to reflect all of your permanent
redirects. Meanwhile, you might lose quite a bit of income because of that.

The search engine always likes to deal with the existing URLs. In this case, you might want to
install a rewrite module in Microsoft Internet Information Services (IIS) to map an ASP.NET
MVC URL to a legacy one. The following post provides some details: http://www.hanselman
.com/blog/ASPNETMVCAndTheNewIIS7RewriteModule.aspx.

Same Content, Multiple URLs
In general, you might want to apply the principle of “Once And Only Once” (OAOO) to
URL design as well as to the rest of your system. At the foundation of Agile programming,
OAOO says that it would be ideal to have the same content exposed through one and only
one URL.

One of the primary purposes of a search engine is determining how relevant the content
pointed to by a given URL is. Of course, a given piece of information is much more relevant if
it can be found only in one place and through a unique URL. Sometimes, however, even if the

 Chapter 8 The ASP.NET MVC Infrastructure 365

content is unique, it can be reached through multiple, subtly different, URLs. The risk is that
you get a lower rank from search engines or, worse yet, a portion of your site is blacked out
because the same content can be retrieved elsewhere.

The problem here does not have much to do with storage and page content, but with the
shape and format of URLs. Even though the W3C suggests you consider using case-sensitive
URLs, from a SEO perspective single-case (and lowercase at that) URLs are a better choice.
If you can manage to keep all of your URLs lowercase, that would add consistency to the site
while reducing duplicate URLs. What about inbound links?

Well, there’s not much you can do to avoid having external sites link to pages in your site
 using the case they prefer. Most likely, they will just copy your URLs, thus repeating the same
case you might have chosen. If this is not the case, you can always force a permanent redirect
via an HTTP module that intercepts the BeginRequest event. Forcing all inbound links to use
the same case saves you from splitting traffic across multiple URLs instead of concentrating
all of it on a single URL with a higher rank. (We can call this strategy “Unite and Conquer,” as
opposed to the “Divide and Conquer” strategy that is so popular in other software scenarios.)

To address this problem, the canonical URL format also has been defined. The canonical
URL describes your idea of a URL in the form of a preferred URL scheme. All you do is add
a <link> tag to the <head> section, as shown here:

<link rel="canonical" href="http://yourserver.com/" />

If your site has a significant amount of content that can be accessed through multiple URLs,
the canonical URL gives more information to search engines so that they can treat similar
URLs as a single one and come to a more appropriate ranking of the content of the resource.
A possible effect of the canonical URL feature (zero costs on your side) is that it can clear up
the controversy between having or not having the trailing slash. With a canonical URL that
defaults to either choice, it makes no difference to a search engine which one is actually
linked.

Permanent Redirection
Permanent redirection is another aspect of URL design and implementation that is strictly
related to SEO.

In ASP.NET, when you invoke Response.Redirect you return to the browser an HTTP 302 code
indicating that the requested content is now available from another specified location. Based
on that, the browser makes a second request to the specified address and gets any content.
A search engine that visits your page, however, takes the HTTP 302 code literally. The actual
meaning of the HTTP 302 status code is that the requested page has been temporarily
moved to a new address. As a result, search engines don’t update their internal tables, and
when someone later clicks to see your page, the engine returns the original address.
As a result, the browser receives an HTTP 302 code and needs to make a second request to
finally get to display the desired page.

366 Part III Programming Features

If the redirection is used to convey requests to a given URL, permanent redirection is a better
option because it represents a juicier piece of information for a search engine. To set up
a permanent redirection, you return the HTTP 301 response code. This code tells user
agents that the location has been permanently moved. Search engines know how to process
an HTTP 301 code and use that information to update the page URL reference. The next time
they display search results that involve the page, the linked URL is the new one. In this way,
users can get to the page quickly and a second roundtrip is saved. Here’s how to arrange
a permanent redirection programmatically:

void PermanentRedirect(string url, bool endRequest)

{

 Response.Clear();

 Response.StatusCode = 301;

 Response.AddHeader("Location", url);

 // Optionally end the request

 if (endRequest)

 Response.End();

}

In ASP.NET 4, the HttpResponse class features a new method for such a thing. It is named
RedirectPermanent. You use the method in the same way you used the classic Response.
Redirect, except that this time the caller receives an HTTP 301 status code. For the browser,
it makes no big difference, but it is a key difference for search engines.

If you compile against the .NET Framework 4, the method is also exposed by the
HttpResponseBase class. Therefore, it is also available to the ASP.NET MVC runtime shell, and
you don’t have to fear introducing undesired dependencies to the ASP.NET runtime that
could hinder testability.

In Chapter 11, “Customizing ASP.NET MVC,” I’ll show how to create a custom action result
object for permanent redirects.

Error Handling
Because ASP.NET MVC works on top of the classic ASP.NET runtime environment, you can’t
expect to find a radically different infrastructure to handle runtime errors. Error handling still
depends on the settings you configure through the <customErrors> section of the web.config
file. Even so, however, ASP.NET MVC does offer a bunch of new and more specific facilities.
In particular, it is interesting to review the whole error-handling strategy in light of search
 engine optimization.

Foundations of ASP.NET Error Handling
Overall, error handling in ASP.NET MVC spans two main areas: the handling of logical
 exceptions and route exceptions. The former is concerned with catching errors in controllers
and views; the latter is more about redirection and HTTP errors.

 Chapter 8 The ASP.NET MVC Infrastructure 367

Handling Program Exceptions
Most of the code you write in ASP.NET MVC applications resides in controller classes.
In a controller class, you can deal with possible exceptions in a number of equivalent ways.
In the first place, you can use local try/catch blocks to protect yourself against a possible
 exception in a specific section of the code. This is the approach that gives you maximum
 flexibility. In this context, ASP.NET MVC offers an interesting facility—the HandleError
 attribute for controller methods and classes.

The default action invoker executes controller methods within a try/catch block and catches
any resulting exceptions, as shown here:

try

{

 // Try to invoke the action method

.
 .
 .

}

catch(ThreadAbortException)

{

 throw;

}

catch(Exception exception)

{

 // Execute exception filters

 var exceptionContext = InvokeExceptionFilters(

 controllerContext, filters.ExceptionFilters, exception);

 // Re-throw if not completely handled

 if (!exceptionContext.ExceptionHandled)

 {

 throw;

 }

 // Generates the view following the exception

 InvokeActionResult(controllerContext, exceptionContext.Result);

}

If an exception is thrown at some point during the method’s execution or during the
 rendering of the view, the control passes to the code in the catch block as long as
the exception is not a ThreadAbortException. Handling the exception entails looping
through the list of registered exception filters and giving each its own chance to fix
things.

Defined, an exception filter is a class that implements the IExceptionFilter interface. The base
Controller class is the world’s simplest exception filter because it implements the interface
but doesn’t really perform any action. You transform your own controller class into a true
 exception filter by overriding the OnException method:

protected virtual void OnException(ExceptionContext filterContext)

{

}

368 Part III Programming Features

As an alternative to overriding the OnException method, you can decorate the class (or just
individual methods) with the HandleError attribute or any custom class that derives from it:

[HandleError]

public class ProductController

{

.
 .
 .

}

As you saw in Chapter 4, “Inside Controllers,” the HandleError attribute traps any exceptions
unless you specify the list of exception types it has to look for. The attribute also lets you
 indicate the view to render next:

[HandleError(ExceptionType=typeof(NullReferenceException), View="SyntaxError")]

Note that for HandleError to produce visible results in debug mode you need to enable
 custom errors at the application level, as shown here:

<customErrors mode="On">

</customErrors>

If you leave on the default settings for the <customErrors> section of the configuration file,
only remote users will get the selected error page. Local users (for example, developers
 doing some debugging) will receive the classic error page with detailed information about
the stack trace as produced by the normal ASP.NET exception handler.

Inside the HandleError Attribute
The HandleError attribute provides an out-of-the-box implementation of an exception filter.
It checks whether the HTTP status code associated with the inner exception is 500 (internal
error). Next, it propagates the error code to the output stream along with the content
 generated by the selected view.

HandleError is an attribute used to decorate controller classes and methods. How does
it make it to the list of registered exception filters that the action invoker awakes when
an exception is thrown?

Before executing a method, the action invoker gets the list of action filters attached to it
and creates type-specific collections. Action filters are attributes (for example, HandleError,
Authorize, and OutputCache, plus your own ones) used to decorate methods. When
an action is caught, the invoker picks up the list of exception handlers and runs them. During
the building of the filters list, a bit of reflection is used to detect whether HandleError is
 defined for the method. If it is, the attribute instance is added to the list. The HandleError
class, in fact, implements IExceptionFilter.

 Chapter 8 The ASP.NET MVC Infrastructure 369

Figure 8-2 shows the effect of running the following code with a breakpoint set on the return
line (note the exception filters collection):

public class MyActionInvoker : ControllerActionInvoker

{

 protected override FilterInfo GetFilters(

 ControllerContext controllerContext, ActionDescriptor actionDescriptor)

 {

 var filters = base.GetFilters(controllerContext, actionDescriptor);

 // Place a breakpoint on the next line

 return filters;

 }

}

[HandleError]

public partial class ProductController : Controller

{

 public ProductController()

 {

 // Sets a custom action invoker only to override GetFilters

 this.ActionInvoker = new MyActionInvoker();

 }

 public virtual ActionResult Index(int? productId)

 {

 throw new ArgumentException();

 }

}

The filters collection available to the action invoker shows two objects in the ExceptionFilters
member: the controller itself and the HandleError attribute.

FIGuRE 8-2 Adding the HandleError attribute adds a new filter to the list.

370 Part III Programming Features

Note that when you use the HandleError attribute and an exception is caught, you lose all
the content currently stored in the ViewData dictionary. In fact, the OnException method
on the filter class doesn’t simply copy the controller’s ViewData in the view result. It instead
 creates a brand-new dictionary that contains error information packaged in an instance of
the HandleErrorInfo class. The net effect is that anything you put in the ViewData disappears.
Here’s an excerpt of the code run by the OnException method in the HandleError filter:

public virtual void OnException(ExceptionContext filterContext)

{

 if (filterContext == null)

 throw new ArgumentNullException("filterContext");

 if (!filterContext.IsChildAction &&

 (!filterContext.ExceptionHandled &&

 filterContext.HttpContext.IsCustomErrorEnabled))

 {

 Exception innerException = filterContext.Exception;

 if ((new HttpException(null, innerException).GetHttpCode() == 500))

 {

 string controllerName = (string) filterContext.RouteData.Values["controller"];

 string actionName = (string) filterContext.RouteData.Values["action"];

 HandleErrorInfo model = new HandleErrorInfo(

 filterContext.Exception, controllerName, actionName);

 ViewResult result = new ViewResult();

 result.ViewName = this.View;

 result.MasterName = this.Master;

 result.ViewData = new ViewDataDictionary<HandleErrorInfo>(model);

 result.TempData = filterContext.Controller.TempData;

 filterContext.Result = result;

 filterContext.ExceptionHandled = true;

 filterContext.HttpContext.Response.Clear();

 filterContext.HttpContext.Response.StatusCode = 500;

 filterContext.HttpContext.Response.TrySkipIisCustomErrors = true;

 }

 }

}

If the default behavior of the HandleError filter is too much trouble for you, the only option is
creating a custom error-handling filter that deals with this scenario differently.

Handling Route Exceptions
In addition to any detected program errors, your application might be throwing exceptions
because the URL of the incoming request doesn’t match any of the mapped routes—whether
because of an invalid URL pattern or a violated constraint. In this case, your users get an
HTTP 404 error. Letting users receive the default 404 ASP.NET page is something you might
want to avoid for a number of reasons—primarily, to be friendlier to end users.

The typical solution enforced by the ASP.NET framework consists of defining custom pages
(or routes in ASP.NET MVC) for common HTTP codes such as 404 and 403. Whenever the user

 Chapter 8 The ASP.NET MVC Infrastructure 371

types or follows an invalid URL, she is redirected to another page where some hopefully nice
and useful information is provided. Here’s how to register ad hoc routes in ASP.NET MVC:

<customErrors mode="On">

 <error statusCode="404" redirect="/error/show" />

.
 .
 .

</customErrors>

This trick works just fine, and there’s no reason to question it from a purely functional
 perspective. So where’s the problem, then?

However, imagine a search engine requesting a URL that doesn’t exist in an application that
implements custom error routing. The application first issues an HTTP 302 code and tells the
caller that the resource has been temporarily moved to another location. At this point, the
caller makes another attempt and finally lands on the error page. This approach is great for
humans, who ultimately get a pretty message; it is less than optimal from an SEO perspective
because it leads search engines to conclude the content is not missing at all—just harder
than usual to retrieve. And an error page is catalogued as regular content and related to
similar content.

On the other hand, route exceptions are a special type of error and deserve a special strategy
distinct from program errors. Ultimately, route exceptions refer to some missing content.

Dealing with Missing Content
The routing subsystem is the front end of your application and the door at which request
URLs knock to get some content. In ASP.NET MVC, it is easy to treat requests for missing
 content in the same way as valid requests. No redirection and additional configuration
are required if you create a dedicated controller that catches all requests that would go
unhandled.

Catch-All Route
A common practice to handle this situation consists of completing the route collection in
global.asax with a catch-all route that traps any URLs sent to your application that haven’t
been captured by any of the existing routes:

public static void RegisterRoutes(RouteCollection routes)

{

 // Main routes

.
 .
 .

 // Catch-all route

 routes.MapRoute(

372 Part III Programming Features

 "ErrorHandling",

 "{*anything}",

 new { controller = "Error", action = "Missing" }

);

}

Obviously, the catch-all rule needs to go at the very bottom of the routes list. This is
 necessary because routes are evaluated from top to bottom and parsing stops at the first
match found. The catch-all route will map the request to your application-specific Error
 controller. The controller, in turn, will look at content and headers and decide which HTTP
code to return. Here’s an example of such an Error controller:

public class ErrorController : Controller

{

 public ActionResult Missing()

 {

 HttpContext.Response.StatusCode = 404;

 HttpContext.Response.TrySkipIisCustomErrors = true;

 // Log the error

.
 .
 .

 // Pass some optional information to the view

 var model = ErrorViewModel();

 model.Message = ...;

.
 .
 .

 // Render the view

 return View(model);

 }

}

The ErrorViewModel class in the example is any view-model class you intend to use to pass
data to the underlying view in a strongly typed manner. Using the ViewData dictionary is
fine as well, and overall it’s an acceptable compromise in this specific and relatively simple
context.

By using an error controller, you can improve the friendliness of the application and
 optimize it for search engines. In fact, you actually serve a pretty user interface to users
while returning a direct (that is, not redirected) error code to any callers.

Skipping IIS Error-Handling Policies
In the preceding code snippet, the Missing method on the ErrorController class at some
point sets to true the TrySkipIisCustomErrors property on the Response object. It is a new
 property introduced with ASP.NET 3.5 that specifically addresses a feature of the IIS 7
 integrated pipeline.

 Chapter 8 The ASP.NET MVC Infrastructure 373

As you saw in Chapter 2, when an ASP.NET application (both Web Forms and ASP.NET MVC)
runs under IIS 7 within an integrated pipeline, some of the ASP.NET configuration settings
will be merged with the settings defined at the IIS level. (See Figure 8-3.)

FIGuRE 8-3 Defining custom error pages at the IIS level

In particular, if error pages are defined in IIS for common HTTP status codes, in the default
case these pages will take precedence over the ASP.NET-generated content. As a result, your
application might trap an HTTP 404 error and serve a nice-looking ad hoc page to the user.
Like it or not, your page will never make it to the end user because it will be replaced by
 another page that might be set at the IIS level.

To make sure that the IIS error handling is always bypassed, you set the TrySkipIisCustomErrors
property to true. The property is useful only for applications that run under IIS 7 in integrated
pipeline mode. In integrated pipeline mode, the default value of the property is false.
The implementation of the HandleError exception filter, for example, takes this aspect into
careful consideration and sets the property to true.

374 Part III Programming Features

Localization
The whole theme of localization is nothing new in the .NET Framework, and ASP.NET is no
exception. You have had tools to write culture-specific pages since the very first version of
ASP.NET. The beauty is that nothing has changed, so adding localization capabilities to
ASP.NET MVC applications is neither more difficult nor different than in classic ASP.NET.

Considering localization from the perspective of an entire application with a not-so-short
expectation of life, there are three aspects of it that need to be addressed: how to make
 resources localizable, how to add support for a new culture, and how to use (or whether
to use) databases as a storage place for localized information.

Making Resources Localizable
A localizable ASP.NET MVC view, as well as an ASP.NET Web Form, uses resources instead
of hard-coded text to flesh out the user interface. After a resource assembly is linked to the
 application, the ASP.NET runtime selects the correct value at run time according to the user’s
language and culture. In ASP.NET, you create resource assemblies by simply creating ad hoc
resource files in appropriate folders: App_LocalResources for resources local to the views, and
App_GlobalResources for resources visible from within all views. Figure 8-4 shows the local
resource folder for the views of a particular controller.

FIGuRE 8-4 Local resources for the views related to the Product controller

Let’s find out more about global and local resources.

 Chapter 8 The ASP.NET MVC Infrastructure 375

Overall Strategy for Global and Local Resources
In general terms, a local resource file is a resource file specific to a page or a bunch of
pages located in the same folder. The visibility of the resource strings doesn’t overcome
the boundaries of the folder. A simple naming convention binds the file to the page. If the
page is named sample.aspx, its corresponding resource file will be sample.aspx.resx. To be
 precise, this resource file is language neutral and has no culture defined. To create a resource
 assembly for a specific culture—say, Italian—you need to name the resource file as follows:
sample.aspx.it.resx. The it string should be replaced with any other equivalent string that
identifies a culture, such as fr for French or en for English.

A global resource file is a resource file that is available to all pages of the application.
It is placed in the App_GlobalResources ASP.NET folder and can be named at will. Multiple
files can be placed in the same folder.

Global and local resource files can happily coexist in the same application. Finding the right
balance between what’s global and what’s local is ultimately up to you. From what I have
learned on the battlefield, having a single global file to hold all localizable resources turns
into a not-so-pleasant experience even for a moderately complex Web application. One issue
is the size of the file, which grows significantly; another issue, which is even more painful, is
the possible concurrent editing that multiple developers might be doing on the same file
with the subsequent need for a continuous merge. However, I encourage you not to overlook
the naming issue. When you have hundreds of strings that cover the entire application scope,
how do you name them? Many strings look the same or differ only on subtle points. Many
strings are not entire strings with some sensible meaning; they often are bits and pieces of
some text to be completed with dynamically generated content. Trust me: naming a few of
them in the restricted context of only some pages is doable; handling hundreds of them for
the entire application is really painful.

Overall, the best approach seems to be having multiple resource files—either local or global.
You might start with a local resource file for each page, and then merge strings and other
resources into a global resource file as you find them referenced from multiple pages.

Dealing with Resources in ASP.NET
In classic ASP.NET, local resources are strictly page-specific in the sense that if properly
named after the ASPX source file, the content of a resource file can be referenced using
 direct syntax from the markup, as shown here:

<asp:Label runat="server" ID="Label1"

 meta:resourcekey="Label1_ResourceID" />

The resourcekey meta attribute indicates that property values for the Label1 control are to
be taken from a page-specific resource file. If the resource file for the page contains an entry

376 Part III Programming Features

such as Label1_ResourceID.Text, the Text property of Label1 will be set to the stored value.
The same can be done for any other properties.

This feature is specific to server controls and can be used in ASP.NET MVC only if you
 populate your views with server-control references.

Global resources—that is, content placed in a resource file within App_GlobalResources—can be
referenced in one of two ways. You can do it programmatically via the GetGlobalResourceObject
method of the HttpContext object:

var msg = HttpContext.GetGlobalResourceObject("globals.resx", "WelcomeMessage");

Alternately, you can reference global resources declaratively from the markup through the
$Resources expression as shown here:

<asp:Literal runat="server" Text="<% $Resources:Globals, WelcomeMessage %>" />

As you can see, many of the built-in features of ASP.NET are aimed at server controls, which
might not be the way you build views in ASP.NET MVC. For this reason, the distinction
 between App_GlobalResources and App_LocalResources is blurred in ASP.NET MVC.

Dealing with Resources in ASP.NET MVC
I deliberately used the term page earlier to force the idea that this is how it works in ASP.NET.
Let’s now see what sort of an ad hoc strategy you can come up with in ASP.NET MVC.

In ASP.NET MVC, you don’t really need the facilities specifically built by the framework
for declarative server controls programming. My suggestion, therefore, is to ignore that
 difference and just be ready to manage resource files as individual project items, making
yourself responsible for the partition in multiple assemblies.

You might start by adding a Resource item to the project. When you do so, an RESX file is
added to the root of the project. (See Figure 8-5.)

Any string you place in such a file is global and can be referenced from any view. You can
also scope resources to one view or to a few views. However, you do that using naming
 conventions such as ad hoc file names and different namespaces.

All RESX files that use the default language are compiled to the same assembly as the
 application. This is the case for files whose name doesn’t include a culture reference, such
as errors.resx, global.resx, product.resx, and so forth. Culture-specific resources are compiled
in separate assemblies, one per culture. I also suggest you consider keeping even default
resources in their own assembly. All you need to do is create a new class library project,
drop all RESX files in it (including localized versions), and reference the library from the main
application.

 Chapter 8 The ASP.NET MVC Infrastructure 377

FIGuRE 8-5 Adding a new resource file

Consuming Localized Resources
An RESX file is ultimately an XML file that gets compiled on the fly by the Microsoft Visual
Studio designer. It originates a C# class like the one shown here:

namespace NorthwindCms {

 using System.Resources;

 using System.Globalization;

 internal class MyGlobals

 {

 private static ResourceManager resourceMan;

 private static CultureInfo resourceCulture;

 internal static ResourceManager ResourceManager

 {

 get {

 if (resourceMan == null) {

 var temp = new ResourceManager("NorthwindCms.MyGlobals",

 typeof(MyGlobals).Assembly);

 resourceMan = temp;

 }

 return resourceMan;

 }

 }

 internal static global::System.Globalization.CultureInfo Culture {

 get { return resourceCulture; }

 set { resourceCulture = value; }

 }

378 Part III Programming Features

 internal static string WelcomeMessage {

 get {

 return ResourceManager.GetString("WelcomeMessage", resourceCulture);

 }

 }

.
 .
 .

}

As a developer, you have some control over the namespace and the access modifier of the
class members. In other words, when you add a resource to the project you can choose
whether to make all the properties public or internal (the default) and decide which
namespace will group them. A public modifier is necessary if you’re compiling resources
in their own assembly. (See Figure 8-6.)

FIGuRE 8-6 Selecting the access modifier for resource strings

Also make sure that in the project the resource file is associated with the Embedded
Resource build action. (See Figure 8-7.)

FIGuRE 8-7 Adding a resource file as an embedded resource

 Chapter 8 The ASP.NET MVC Infrastructure 379

You set the global namespace through the Custom Tool Namespace property shown in
Figure 8-7. The access modifier and namespace are important because they contribute to
determining the expression you use in your views to reference a localized string or resource.
Here’s what you need:

<%= NorhtwindCms.MyGlobals.WelcomeMessage %>

The preceding expression guarantees that either the language-neutral value or the localized
value is retrieved and displayed. The resource manager will pick up the right assembly
 resource for the current culture.

Note There are various options for referencing localizable resources. The approach presented
here is strongly typed and causes compile-time errors if you happen to use invalid object
names. Another popular approach you find described in a number of posts entails using
a made-to-measure HTML helper that gets the resource file and item name and returns localized
content. Finally, you can still directly call the resource-specific methods on HttpContext. All these
techniques are functionally equivalent; picking one is mostly a matter of preference, with strong
typing being the only core reason for choosing one over the other.

Setting the Current Culture
In the .NET Framework, the culture is set on the current thread through the CurrentCulture
and CurrentUICulture properties. In general, both properties are necessary when you want
to support multiple languages in a page or view. In fact, the two properties refer to distinct
capabilities and have an impact on different areas of the user interface.

The CurrentCulture property affects the results of functions, such as the date, the number,
and currency formatting. The CurrentUICulture property, on the other hand, determines the
localized resource file from which page resources are loaded. The following code snippet
shows a possible way to arrange a unit test aimed at testing whether culture-specific items
are correctly retrieved. If you intend to test only whether resource files are being used as
 expected, you can comment out the setting of CurrentCulture.

const string culture = "it-IT";

var cultureInfo = CultureInfo.CreateSpecificCulture(culture);

Thread.CurrentThread.CurrentCulture = cultureInfo;

Thread.CurrentThread.CurrentUICulture = cultureInfo;

Note that the two culture properties might or might not have the same value. For example,
you can switch the language of text and messages according to the browser’s configuration
while leaving globalization settings (such as dates and currency) constant.

In ASP.NET, you use similar properties on the Page class to set the current culture: Culture
and UICulture. The value of Auto assigned to UICulture automatically selects the browser’s
language for the thread in charge of the request. In this way, the user is responsible for the
language of the pages.

380 Part III Programming Features

You can also employ a global setting for the culture by using the <globalization> section of
the web.config file:

<globalization uiculture="it" culture="it-IT" / >

Most of the time, though, what you really want is the ability to set the culture
 programmatically and the ability to change it on the fly as the user switches to a different
culture by clicking an icon or using a culture-specific URL.

Changing Culture on the Fly
To change the culture programmatically, you need to satisfy two key requirements. First,
define the policies you’ll be using to retrieve the culture to set. The policy can be a value you
read from some database table or perhaps from the ASP.NET cache. It can also be a value
you retrieve from the URL. Finally, it can even be a parameter you get via geolocation—that
is, by looking at the IP address the user is using for connecting.

After you have the culture to set, you have to set it by acting on the current thread, as shown
earlier. Note that the culture must be set for each request because each request runs on its
own thread. In ASP.NET MVC, an easy way to achieve this is by using a custom action invoker.
As mentioned, the action invoker is the component that takes care of executing each
 controller method. By overriding the InvokeAction method, you can set the desired culture on
the current thread and make sure that this setting is automatically applied for every request.

public class MyActionInvoker : ControllerActionInvoker

{

 public override bool InvokeAction(

 ControllerContext controllerContext, string actionName)

 {

 string lang = DetermineLocaleToEnforce(controllerContext);

 Thread.CurrentThread.CurrentUICulture = CultureInfo.CreateSpecificCulture(lang);

 return base.InvokeAction(controllerContext, actionName);

 }

 private string DetermineLocaleToEnforce(ControllerContext context)

 {

 // Current language assumed to be in a specific location of the Cache

 string lang = "en-us";

 object o = controllerContext.HttpContext.Cache["Lang"];

 if (o != null)

 lang = o as string;

 return lang;

 }

}

 Chapter 8 The ASP.NET MVC Infrastructure 381

With this infrastructure in place, you can add links to your pages (typically, the master page)
to switch languages on the fly:

<%= Html.ActionLink("Italian", "SwitchLang", "Home", new { lang = "it" }, null) %

<%= Html.ActionLink("English", "SwitchLang", "Home", new { lang = "en" }, null)%>

The action method simply stores the newly selected language in the store you selected—the
ASP.NET cache in the example—and redirects:

public virtual void SwitchLang(string lang)

{

 if (String.Equals(lang, "it", StringComparison.InvariantCultureIgnoreCase))

 SetCulture("it-it");

 else

 SetCulture("en-us");

 // Return to the calling URL (or go to the site's home page)

 HttpContext.Response.Redirect(HttpContext.Request.UrlReferrer.AbsolutePath);

}

private void SetCulture(string lang)

{

 HttpContext.Cache["Lang"] = lang;

}

All you need to do is ensure that the current culture identifier is stored somewhere. Next, for
each request, the modified invoker will do the job.

Finally, how do you replace the action invoker? Here’s some sample code:

public BaseController()

{

 this.ActionInvoker = new MyActionInvoker();

}

For a site that supports language switches, you can use a base controller class that exposes
the preceding constructor. Otherwise, you can set the custom invoker only for the controllers
for which you intend to support localization.

Note More and more Web sites check the location from where a user is connected and suggest
a language and a culture. This feature requires an API that looks up the IP address and maps
that to a country and then a culture. Some browsers (for example, Firefox 3.5, Safari, iPhone,
and Opera) have built-in geolocation capabilities that work according to the W3C API.
(See http://www.mozilla.com/firefox/geolocation.)

To support other browsers (including Internet Explorer), you can resort to third-party services
such as Google Gears. Google Gears is a plug-in that extends your browser in various ways,
including adding a geolocation API that returns the country of the user from the current
 geographical location. Note that Google returns the ISO 3166 code of the country (for example,
GB for the United Kingdom) and its full name. From here, you have to determine the language
to use. The country code doesn’t always match the language. For the United Kingdom, the
 language is en. To install Google Gears, pay a visit to http://gears.google.com.

382 Part III Programming Features

Storing Localized Resources in a Database
While discussing localization, it seems inevitable that you have to talk about databases
as a possible store for localized data. Is this an option? You bet. However, there are
some pros and cons to consider.

In the first place, using a database adds latency even though you will not be making
a database call for each segment of a view to be localized. Most likely, instead, you’ll
read a bunch of records and probably cache them for a long time. The performance
hit represented by using the database in this way is therefore less devastating than one
might think at first.

Storing localization data inside a database requires a custom localization layer, whereas
going through the classic XML-based approach of resource files doesn’t lead you
to writing much extra code and offers you excellent support from the Visual Studio
designers.

When the number of views become significant (for example, in the order of hundreds),
the number of resource items will be at least in the order of thousands. At this point,
managing them can be problematic. You can have too many assemblies loaded in the
AppDomain consuming runtime memory, and that will have an impact on the overall
performance of the site. Hence, a database is probably the best way to go for a large
share of localizable content.

Data stored within a relational database is easier to manage, query, and cache, and the
size is not an issue. In addition, with a database and a custom localization layer you
gain more flexibility in the overall retrieval process of local resources. In fact, you can
ask the layer for a group of strings—or, better yet, for raw data—to then be formatted
for the needs of UI. In other words, a custom localization layer decouples you from
maintaining a direct binding between resource item and specific pieces of the user
interface.

Dependency Injection
ASP.NET MVC is a deeply stratified framework where a great number of native components
are designed to be easily replaced with custom components that implement the same
 interface. In this regard, you can say that ASP.NET MVC is a natural habitat for implementing
extensibility patterns such as the Dependency Injection (DI) pattern.

Dependency injection is a relatively recent term introduced by Martin Fowler to replace, and
further specialize, another popular term that was in use for many years (especially in the Java
space)—Inversion of Control (IoC). Today, DI tends to indicate the general pattern, whereas

 Chapter 8 The ASP.NET MVC Infrastructure 383

IoC is a term that describes a family of powerful productivity tools widely employed in the
implementation of the DI pattern—IoC containers.

ASP.NET MVC lends itself very well to DI and IoC containers, which are ideal tools to leverage
the natural extensibility of the ASP.NET MVC framework. As a result, implementing forms
of dependency injection is a necessary step in nearly any ASP.NET MVC—whether for
 gaining the benefits of customizing certain areas (for example, the controller factory or the
 action invoker) or to achieve more testability. A reference to an IoC container is therefore
a common presence in most ASP.NET MVC projects.

Before taking a closer look at an IoC container, let’s briefly review the theory of dependency
injection and focus on a key principle in today’s software design—the Dependency Inversion
Principle (DIP).

Note Dependency inversion is one of the design principles at the foundation of software
development that are today summarized under the umbrella term SOLID (along with Single
Responsibility, Open/Closed, Liskov’s Substitutability, and Interface Segregation).

Dependency Inversion in Action
Defined, the Dependency Inversion Principle states that high-level classes should not depend
on lower-level classes. High-level classes, instead, should always depend on abstractions
of their required lower-level classes. In a way, this principle is a specialization of one of the
 pillars of object-oriented design—program to an interface, not to an implementation.

DIP is the formalization of a top-down approach to defining the behavior of any significant
class method. In using this top-down approach, you focus on the work flow that happens at
the method level rather than focusing on the implementation of its particular dependencies.
At some point, though, lower-level classes should be linked to the mainstream code.
DIP suggests that this should happen via injection.

In a way, DIP indicates an inversion of the control flow whenever a dependency is met—
the main flow doesn’t care about details of the dependency as long as it has access to
an abstraction of it. The dependency is then resolved in some way. Figure 8-8 shows the
 classic DIP diagram for the canonical example of DIP as originally presented by Robert Martin
in the paper you can find at the following URL: http://www.objectmentor.com/resources/
articles/dip.pdf.

The paper describes a sample Copy function that reads from a source and writes to
a target stream. The Copy function ideally doesn’t care about the details of the reader and
writer components. It should care only about the interface of the reader and writer. Reader
and writer are then injected or resolved in some way around the implementation of the

384 Part III Programming Features

Copy function. How this point is approached depends on the actual pattern you intend
to use.

IReader IWriter

TextReader TextWriter

Copy

FIGuRE 8-8 The DIP diagram

To address DIP, you commonly use either of two patterns: the Service Locator pattern or the
Dependency Injection pattern.

The Service Locator Pattern
The Service Locator pattern defines a component that knows how to retrieve the services
an application might need. The caller has no need to specify the concrete type; the caller
normally indicates an interface, a base type, or even a nickname of the service in the form
of a string or a numeric code.

The implementation of a Service Locator pattern is typically based on an instance of the
Factory pattern plus any additional logic that is needed to figure out the components to
instantiate. The Service Locator pattern hides the complexity of component lookup, handles
caching or pooling of instances and, in general, offers a common façade for component
lookup and creation. Here’s the typical implementation of a service locator:

public class ServiceLocator

{

 private static const string SERVICE_QUOTEPROVIDER = "quoteprovider";

 // You might also want to have a generic method GetService<T>()...

 public static object GetService(Type t)

 {

 if (t == typeof(IQuoteProvider))

 {

 return new SomeQuoteProvider();

 }

 Chapter 8 The ASP.NET MVC Infrastructure 385

.
 .
 .

 }

 public static object GetService(string serviceName)

 {

 switch(serviceName)

 {

 case SERVICE_QUOTEPROVIDER:

 return new SomeQuoteProvider();

.
 .
 .

 }

 }

}

As you can see, the locator is merely a wrapper around a Factory object that knows how
to get an instance of a given (or indirectly referenced) type. Let’s have a look now at the
code that calls the locator. The following code illustrates a class that first gets quotes for
the specified list of symbols and then renders values out to an HTML string:

public class FinanceInfoService

{

 public string GetQuotesAsHtml(string symbols)

 {

 // Get the Finder component

 IQuoteProvider provider = ServiceLocator.GetService("quoteprovider");

 StockInfo[] stocks = provider.FindQuoteInfo(symbols);

 // Get the Renderer component

 IRenderer renderer = ServiceLocator.GetService("quoterenderer");

 string html = renderer.RenderQuoteInfo(stocks);

 return html;

 }

}

The locator code lives inside the method that manages the abstraction, and the factory
is part of the deal. By simply looking at the signature of the FinanceInfoService class, you
can’t say whether or not it has dependencies on external components. You have to inspect
the code of the GetQuotesAsHtml method to find it out.

The main Service Locator focus is to achieve the lowest possible amount of coupling
 between components. The locator represents a centralized console that an application
uses to obtain all the external dependencies it needs. In doing so, the Service Locator
 pattern also produces the pleasant side effect of making your code more flexible and
extensible.

386 Part III Programming Features

Using the Service Locator pattern is not a bad thing from a purely functional perspective.
However, in more practical terms a likely better option exists: the DI pattern.

The Dependency Injection Pattern
The biggest difference between Service Locator and DI is that with dependency injection the
factory code lives outside of the class being worked on. The pattern suggests that you design
the class in such a way that it receives all of its dependencies from the outside. Here’s how to
rewrite the FinanceInfoService class for making use of DI:

public class FinanceInfoService

{

 private IQuoteProvider _provider;

 private IRenderer _renderer;

 public FinanceInfoService(IQuoteProvider provider, IRenderer renderer)

 {

 _provider = provider;

 _renderer = renderer;

 }

 public string GetQuotesAsHtml(string symbols)

 {

 StockInfo[] stocks = _provider.FindQuoteInfo(symbols);

 string html = _renderer.RenderQuoteInfo(stocks);

 return html;

 }

}

When it comes to using DI in classes, a critical decision for the developer is about how and
where to allow for code injection. There are three ways to inject dependencies into a class—
using the constructor, a settable property, or the parameters of a method. All techniques
are valid, and the choice is ultimately up to you. In general terms, the consensus is for using
 constructors for necessary dependencies and setters for optional dependencies. However,
some considerations apply.

Injection Mechanisms
Using the constructor seems to be the default approach to tackle. In the first place, it is
 always desirable to have valid objects from the beginning. In light of this, when a class needs
a dependency, the dependency has to be injected at construction time. However, what if you
have many dependencies? In this case, your constructor would look dangerously messy.

Even though a long list of parameters in the constructor is often the sign of some design
 issues, this isn’t a hard-and-fast rule. You might encounter situations where you have
 complex constructors with many parameters. In this case, grouping dependencies in
a compound object is a solution. In ASP.NET MVC, you see this pattern frequently used in

 Chapter 8 The ASP.NET MVC Infrastructure 387

the implementation of the controller logic. Any XxxContext class you run across in ASP.NET
MVC is ultimately a way to group multiple dependencies together.

In a nutshell, your goal should be to reveal dependencies and intentions right at construction
time. This can be done in two ways: via a set of classic constructors you manage to keep as
simple as possible or via factories.

Factories are the preferred approach in the Domain-Driven Design (DDD) methodology.
Using a factory, you can express more clearly the context in which you need an instance of
the type. You can also deal with dependencies inside the factory code and ensure you return
valid objects from the beginning. In addition, your classes end up having only the default
constructor (probably implemented as a protected member).

Using constructors also hinders inheritance because derived classes might have the need to
receive dependencies as well. When you add a new dependency, this design scheme might
require more refactoring work.

When the dependency is optional, however, there’s no strict need to make it show up at the
constructor level. In this case, using a setter property is fine and probably the recommended
approach that helps keeping the constructor (or factory code) leaner and cleaner.

In summary, there are good reasons for using the constructor and good reasons for going
with setter properties. As with many other architectural questions, the right answer is, “It
 depends.” And it depends also on your personal taste.

Note The complexity and duration of the solution you are developing is another important
 parameter you need to consider. In an enterprise scenario when discussing large domain models,
as an architect I mostly recommend using factories rather than constructors, and passing
 factories whatever dependencies they need to create instances of the valid type for the specific
context. Anything else that is optional can go through setter properties.

Admittedly, I’m mixing two different aspects of class design: the injection mechanism
 (constructors vs. setters) and instantiation mechanism (constructors vs. factories). They are
 related, however. In fact, one argument you might hear against using injection via constructors
is to avoid spoiling constructors by using too many parameters for the sake of inheritance.
In relatively simpler scenarios, any injection mechanism is probably fine, and you get just the one
you feel most comfortable with.

A Simple and Highly Testable Solution
Dependency injection is a great solution because it decouples your mainstream code and
its dependencies. Subsequently, dependencies are to be created and then injected. On the
other hand, the work required to create instances is certainly repetitive; it is also error
prone, especially if you’re dealing with complex and nested hierarchies of dependencies.
This is exactly the driving force that brought about IoC containers.

388 Part III Programming Features

Before I get to IoC containers, however, let me refine the code shown earlier for the
FinanceInfoService class to make it more effective in both testing and implementing
 use-cases:

public class FinanceInfoService

{

 private IQuoteProvider _provider;

 private IRenderer _renderer;

 public FinanceInfoService()

 {

 _provider = _provider ?? new DefaultQuoteProvider();

 _renderer = _renderer ?? new DefaultHtmlRenderer();

 }

 public FinanceInfoService(IQuoteProvider provider, IRenderer renderer)

 {

 _provider = provider;

 _renderer = renderer;

 }

.
 .
 .

}

In this version, the FinanceInfoService class features a default constructor that resolves all
necessary dependencies in a default way—that is, by directly using an implementation of
a type or, if you prefer, using the world’s simplest embedded locator. The second constructor,
instead, accepts all dependencies explicitly and is great for testability. In situations where
 factories are overkill, this solution offers a good balance between testability, good design,
and programming comfort.

IoC Containers
An IoC container is a framework specifically created to support DI. It can be considered
a productivity tool for implementing DI quickly and effectively. From the perspective of
an application, a container is a rich factory that provides access to external objects to be
 retrieved and consumed later.

All IoC frameworks are built around a container object that, when bound to some
 configuration information, resolves dependencies. The caller code instantiates the container
and passes the desired interface as an argument. In response, the IoC framework returns
a concrete object that implements that interface. An IoC container holds a dictionary of
type mappings where typically an abstract type (for example, an interface) is mapped to
a concrete type or an instance of a given concrete type. Table 8-1 lists some of the most
popular IoC frameworks available today.

 Chapter 8 The ASP.NET MVC Infrastructure 389

TABLE 8-1 Popular IoC frameworks

Framework URL

Autofac http://code.google.com/p/autofac

Castle Windsor http://www.castleproject.org/container/index.html

NInject http://www.ninject.org

Spring.NET http://www.springframework.net

StructureMap http://structuremap.sourceforge.net/Default.htm

Unity http://codeplex.com/unity

After it is configured, an IoC container gives you the ability to resolve the whole chain
of dependencies between your types with a single call. And you save yourself all the
 intricacies of inner dependencies. For example, if you have some ISomeService parameter
in a class constructor or property, you can be sure you’ll get it at run time as long as you tell
the IoC container to resolve it. The beauty of this approach is that if the constructor of the
 concrete type mapped to ISomeService has its own dependencies, these are resolved as well
and automatically.

Take this further and you see the point: with an IoC container, you stop caring about the
cloud of dependencies. Furthermore, all you do is design the graph of dependencies using
the syntax supported by the IoC of choice. Everything else happens free of charge.

Advanced Features of IoC Containers
As mentioned, an IoC container is born to be a smart factory. If you don’t give it any other
responsibilities, you can reasonably write a fully functional (yet simple) IoC container with
very few lines of code. (See http://ayende.com/Blog/archive/2007/10/20/Building-an-IoC-
container-in-15-lines-of-code.aspx for a nice proof of concept.) So what’s the difference
between a simple IoC that takes 15 lines to work and an IoC library of several thousands
of lines? The answer is fairly obvious: features.

Table 8-1 lists six different IoC containers. IoC containers differ in terms of the syntax they
support (for example, lambda expressions), the configuration policies (for example, the
 external XML scheme), plus additional features. Two features are gaining a lot of importance
today: aspect-orientation capabilities and specialized modules that facilitate integration
with specific Web or Windows technologies. In particular, I feel that aspect-orientated
 programming (AOP) is an excellent source of some IoC tools, and it’s even better if coupled
with integration modules. As a quick example, consider the aspect-oriented capabilities
of Spring.NET with regard to WCF services.

390 Part III Programming Features

Spring.NET comes with its own service host factory that takes care of creating proxies for
a given WCF service. Here’s the code you need to put in a .svc service endpoint file to enable
the Spring’s WCF factory:

<%@ ServiceHost Service="calculator"

 Factory="Spring.ServiceModel.Activation.ServiceHostFactory" %>

At this point, the service delegates its instantiation process to the library, meaning that the
library can automatically resolve some dependencies and surround the execution of each
method with pre- and post-interceptors. Note that by using an AOP-enabled framework
you don’t change anything in the code of the WCF service. All you might need to change
to add AOP to an existing service is the Factory attribute in the .svc file. Next, you need the
 following in the application’s configuration file:

<objects xmlns="http://www.springframework.net"

 xmlns:aop="http://www.springframework.net/aop">

 <!-- Define the service to be customized -->

 <object id="someService" singleton="false" type="YourApp.Services.SomeService">

 <property name="SampleProperty" value="..." />

 </object>

 <!-- Define the services to be intercepted: all found in the specified namespace -->

 <object id="interceptedServices"

 type="Spring.Aop.Support.SdkRegularExpressionMethodPointcut, Spring.Aop">

 <property name="pattern" value=" YourApp.Services.*" />

 </object>

 <!-- Define interceptors to be added -->

 <object id="newBehavior" type="YourApp.Extensions.SomeInterceptor">

 <property name="..." value="..." />

.
 .
 .

 </object>

 <!-- Configure AOP -->

 <aop:config>

 <aop:advisor pointcut-ref="interceptedServices" advice-ref="newBehavior" />

 </aop:config>

</objects>

First you register the WCF service with the Spring.NET framework. At this time, you specify
any required properties to be injected. Next, you define a point-cut and advice as in a
 classic AOP framework. A point-cut identifies the classes to be added to some new behavior
(or an aspect or advice if you use the AOP jargon).

IoC containers are primarily a productivity tool because they retrieve object instances
for you. However, some of them offer advanced features that can be used to implement
an extremely powerful extensibility layer on top of your application. I’ll return to the topic
of scenarios for using IoC containers within ASP.NET MVC in a moment. For now let’s get
 acquainted with a particular IoC container—Unity, the IoC container available from Microsoft.

 Chapter 8 The ASP.NET MVC Infrastructure 391

Note In the .NET Framework 4, a new subsystem makes its debut, and it is closely related
to dependency injection. The framework is the Managed Extensibility Framework (MEF).
Dependency injection is only part of the work that MEF tries to do. In brief, MEF provides
a programming model for classes to declare which properties they intend to import and which
properties they intend to publicly export.

A Brief Tour of Unity
Unity is an open-source project from Microsoft aimed at creating a classic IoC framework for
developers to build object instances in a smart and highly configurable way. In this chapter,
I’ll focus on version 1.2; however, be aware that version 2.0 ships in the same time frame of
Visual Studio 2010.

To add Unity to a project, you add a reference to the Microsoft.Practices.Unity and
Microsoft.Practices.ObjectBuilder2 assemblies, plus a third one—the Microsoft.Practices
.Unity.Configuration assembly—if you configure the container using the application’s
 configuration file.

Let’s see how to accomplish some key IoC operations with Unity, such as registering types
both programmatically and declaratively.

Registering Types and Instances
In Unity, the container type is UnityContainer and you use it to register types and instances,
as shown here:

var container = new UnityContainer();

container

 .RegisterType<IServiceLayer,

 DefaultServiceLayer>()

 .RegisterType<ICustomerRepository,

 CustomerRepository>();

var serviceLayer = container.Resolve<IServiceLayer>();

You use the RegisterType method to establish a mapping between an abstract type and
a concrete type. If the same abstract type should be mapped to different types in different
contexts of the same application, you can use the following overload:

container

 .RegisterType<ILogger, DefaultLogger>()

 .RegisterType<ILogger, FileLogger>("Tracing");

The additional string parameter disambiguates the request and gives Unity enough
 information about which concrete type to pick up. You use RegisterInstance instead of
RegisterType to supply a prebuilt instance of a type to the container.

392 Part III Programming Features

Does it really make sense for an application to pass to a factory the instance it will get back
later? The purpose is to preserve the benefits of an IoC also in situations in which you can’t
annotate a class to be automatically resolved by Unity.

To see an example of this, let’s first introduce the syntax required to annotate constructors
and properties for injection. When requested to create an instance of a given type, Unity
gets information about the constructors of the type. If multiple constructors are found, Unity
picks up the one with the longest signature. If multiple options are available, an exception
is thrown. It might be the case, however, that you want a particular constructor to be used.
This requires that an attribute be attached to the selected constructor:

[InjectionConstructor]

public MyClass()

{

.
 .
 .

}

If you have no access to the source code, you might want to consider RegisterInstance.
Similarly, if injection happens through the setter of a property, you need to decorate the
property accordingly, as shown here:

private ILogger _logger;

[Dependency]

public ILogger Logger

{

 get { return _logger; }

 set { _logger = value; }

}

RegisterType and RegisterInstance are the methods you work with if you opt for configuring
the Unity framework programmatically. However, offline configuration is also supported
via an ad hoc section in the application’s configuration file. In any case, programmatic and
 declarative configuration is totally equivalent.

Resolving Dependencies
In Unity, you invoke the method Resolve on the container to trigger the process that returns
an instance of the type at the root of the dependency chain:

container.Resolve(registeredType);

The resolver can be passed any additional information it might need to figure out the correct
type to return:

var logger = container.Resolve<ILogger>("Tracing");

 Chapter 8 The ASP.NET MVC Infrastructure 393

The ResolveAll method is used instead to resolve in a single step all objects registered with
the specified abstract type.

Declarative Configuration
The Unity framework comes with a custom configuration section that can be merged with
the web.config file of a Web application. Here’s the script you need to register types:

<unity>

 <containers>

 <container name="MyApp">

 <types>

 <type type="ILogger" mapTo="DefaultLogger">

 <lifetime type="singleton"/>

 <typeConfig>

 <constructor>

 <param name="sourceName" parameterType="string">

 <value value="default"/>

 </param>

 </constructor>

 </typeConfig>

 </type>

 </types>

 </container>

 </containers>

</unity>

Under the <types> section, you list the abstract types mapped to some concrete
 implementation. The following code shows how to map ILogger to DefaultLogger:

<type type="ILogger" mapTo="DefaultLogger">

Taking the declarative approach, you can also select the constructor to be used and set up
the lifetime of the instance. To configure the Unity container with the information in the
web.config file, you need the following code:

var container = new UnityContainer();

// Retrieve the <unity> section

var section = ConfigurationManager.GetSection("unity") as UnityConfigurationSection;

if (section != null)

{

 // Retrieve the specified container by name

 UnityContainerElement containerElement = section.Containers["MyApp"];

 // Load information into the specified instance of the container

 if (containerElement != null)

 containerElement.Configure(container);

}

As it turns out, Unity allows you to have multiple containers with different settings to load
as appropriate.

394 Part III Programming Features

Lifetime Managers
Just like any other IoC framework, Unity allows you to assign a fixed lifetime to any managed
instance of mapped types. By default, Unity doesn’t apply any special policy to control the
lifetime of the object returned for a registered type. It simply creates a new instance of
the type each time you call the Resolve or ResolveAll method. However, the reference to the
 object is not stored so that a new one is required to serve a successive call.

The default behavior can be modified by using any of the predefined lifetime managers you
find in Unity. Table 8-2 lists them.

TABLE 8-2 Lifetime managers

Class Description

ContainerControlledLifetimeManager Singleton

ExternallyControlledLifetimeManager Singleton, but one that holds a weak reference so that
the garbage can clear it if it’s out of scope

PerThreadControlledLifetimeManager Per-thread singleton

You can also create custom managers by inheriting the LifetimeManager base class.

Here’s how you set a lifetime manager in code:

container

 .RegisterType<ILogger, DefaultLogger>(

 "Tracing",

 new ContainerControlledLifetimeManager());

Here’s what you need instead to set a lifetime manager declaratively:

<type type="ILogger" mapTo="DefaultLogger">

 <lifetime type="singleton" />

</type>

Note, however, that the word singleton you assign to the type attribute is not a keyword or
a phrase with a special meaning. More simply, it is intended to be an alias for a type that
must be declared explicitly:

<typeAliases>

 <!-- Lifetime manager types -->

 <typeAlias alias="singleton"

 type="Microsoft.Practices.Unity.ContainerControlledLifetimeManager,

 Microsoft.Practices.Unity" />

 <typeAlias alias="perThread"

 type="Microsoft.Practices.Unity.PerThreadLifetimeManager,

 Microsoft.Practices.Unity" />

 <typeAlias alias="external"

 type="Microsoft.Practices.Unity.ExternallyControlledLifetimeManager,

 Microsoft.Practices.Unity" />

 Chapter 8 The ASP.NET MVC Infrastructure 395

 <!—User-defined aliases -->

 <typeAlias alias="IMyInterface"

 type="MyApplication.MyTypes.MyInterface, MyApplication.MyTypes" />

.
 .
 .

</typeAliases>

After you have the aliases all set, you can use alias names in the section where you register
types.

Creating a Global Container
Let’s consider now the steps required to integrate Unity with an ASP.NET MVC application.
ASP.NET MVC pushes you toward the creation of layered applications where you have
an overall architecture like the one shown in Figure 8-9.

Presentation

Controller

Service Layer

CustomerService

Repository

CustomerRepository

FIGuRE 8-9 A typical layered architecture for an ASP.NET MVC application

This model implies that the controller needs to instantiate a class that implements the
 use-cases for a given context—the customer operations. Next, the CustomerService class
will likely need to perform some data access. All classes might have dependencies on some
 cross-cutting module such as a logger. How would you handle this?

In Chapter 4, I discussed controllers with at least a couple of constructors—one bound to
the expected behavior and one accepting dependencies. The second constructor mostly
serves the need of unit tests and lets you test the controller (and the service layer classes)
in isolation, as dependencies can be easily mocked up. This is an effective, yet manual,
 implementation of raw dependency injection.

396 Part III Programming Features

Let’s reconsider the same scenario in light of IoC tools and see how Unity (or another IoC
framework) works. The final effect is the same, but with IoC, you have in place a much more
extensible and flexible solution. So an IoC will give you more than just dependency injection.
The real question to answer is whether you need all of it. So don’t be too surprised if you
 realize that in your relatively simple scenario IoC is overkill.

Tip Adding an extra constructor to a class for the sole purpose of testability might not be
 acceptable in some cases. In this case, the .NET Framework offers an elegant and effective
 solution through partial classes. If the class is marked as partial, in the test project you can add
a twin partial class that completes the base one by adding the extra constructor. In this way, you
preserve testability without spoiling your design.

Custom Controller Factory
In ASP.NET MVC, the instantiation of the controller class is automated (even though
 sometimes you might like control over this automation process, which is something
Chapter 11 discusses). The execution of the request determines the response for the user
and any impact on the middle tier. The ASP.NET MVC infrastructure includes a factory that
uses the default constructor of the selected controller class. What if you have parameterized
constructors on your controller class and need to pass in some data?

This scenario is not supported out of the box, but the extremely extensible design of
ASP.NET MVC offers a hook for you to replace the default controller factory with your own.
A common way to replace the default controller factory is to integrate an IoC container in it
so that any parameter can be resolved brilliantly by looking at the table of registered types.
Here’s how to do it.

It all starts in Application_Start, where you register your own controller factory. A controller
factory is a class that implements the IControllerFactory interface. To register the factory, you
pass an instance of the SetControllerFactory method to the current instance of the controller
builder:

protected void Application_Start()

{

 RegisterRoutes(RouteTable.Routes);

.
 .
 .

 // Register a custom controller factory

 RegisterControllerFactory();

}

public static void RegisterControllerFactory()

{

 // Create and configure the container to pass as an argument to the factory

 var container = new UnityContainer();

.
 .
 .

 Chapter 8 The ASP.NET MVC Infrastructure 397

 // Create and register the factory

 IControllerFactory factory = new MyAppControllerFactory(container);

 ControllerBuilder.Current.SetControllerFactory(factory);

}

Another method on the controller builder—GetControllerFactory—is used by the
ASP.NET MVC infrastructure to obtain a reference to the object actually responsible for
 getting a controller instance. Let’s see a controller factory from the inside:

public class MyAppControllerFactory : DefaultControllerFactory

{

 private IUnityContainer _container;

 public MyAppControllerFactory(IUnityContainer container)

 {

 _container = container;

 }

 protected override IController GetControllerInstance(Type controllerType)

 {

 if (controllerType == null)

 return null;

 return _container.Resolve(controllerType) as IController;

 }

}

As you can see, the controller is resolved via Unity instead of directly using the new operator.
This guarantees that further dependencies are identified and resolved.

Managing Dependencies
With a Unity-based factory in place, the following controller class can be safely instantiated:

public class CustomerController : Controller

{

 [InjectionConstructor]

 public CustomerController(ICustomerService service)

 {

 _service = service;

 }

 private readonly ICustomerService _service;

.
 .
 .

}

Note that the InjectionConstructor is not strictly necessary unless you have additional
(and longer) constructors.

You can list as many dependencies as you need in the controller’s constructor, and you
can even group them in a context object. Furthermore, you can add public properties to
your controller and have the factory resolve them (thus injecting logic into the controller

398 Part III Programming Features

class) as long as the properties are decorated as dependencies and their types are properly
 registered with Unity.

This approach can be taken regardless of the IoC framework you choose. In this regard,
a point to be further analyzed is the level of coupling you want between the constructor
and the IoC framework. The InjectionConstructor attribute we employed in the preceding
code snippet sets up a relationship between Unity and the controller class. In general, you
might want to resort to the Unity’s programmatic API to configure the controller:

container.RegisterType<CustomerController>(

 new InjectionConstructor(new ResolvedParameter<ICustomerService>()));

The code indicates that the constructor with a single parameter of type ICustomerService
must be used to resolve CustomerController.

Some degree of coupling between your application and the IoC container is unavoidable;
managing to keep coupling off the controllers is a great result. Code in global.asax and code
in the controller’s factory are inevitably bound to the IoC you’re using.

Injecting a Custom Action Invoker
Earlier in this chapter, while discussing the localization features we ran into the need to
 replace the action invoker of some controllers. In particular, we found out that a specialized
invoker is required to set the right culture on the current thread. You need to set the custom
invoker on each controller interested in the localization features—nearly all controllers in the
application. How do you do that?

The most obvious, but least enticing, option is that you modify the constructor of each
 controller as follows:

public class CustomerController()

{

 this.ActionInvoker = new MySpecialInvoker();

}

A slightly better solution is deriving all controllers from a base class—an approach you
would probably take anyway—that provides a made-to-measure base constructor. Having
a custom controller factory, however, makes it nifty and unobtrusive. Here’s how to rewrite
the controller factory:

public class MyAppControllerFactory : DefaultControllerFactory

{

 private IUnityContainer _container;

 public MyAppControllerFactory(IUnityContainer container)

 {

 _container = container;

 }

 Chapter 8 The ASP.NET MVC Infrastructure 399

 protected override IController GetControllerInstance(Type controllerType)

 {

 if (controllerType == null)

 return null;

 var controller = container.Resolve(controllerType) as Controller;

 if (controller == null)

 return controller;

 // Set the action invoker that fully supports localization

 controller.ActionInvoker = new MyActionInvoker();

 return controller;

 }

}

With this code in the project, when the user switches to a different language, all views
and controllers are aware of it because the invoker ensures that the proper culture is set on
the thread. As long as you have code and resource-aware markup, it just works.

Having a customer controller factory doesn’t necessarily mean you have an IoC container
around. If you don’t have one, however, you can further improve the previous solution by
resolving the action invoker type, as shown here:

controller.ActionInvoker = container.Resolve<IActionInvoker>();

In this case, you also need to add some configuration settings either in the web.config file
or programmatically to let Unity know about the mapping between IActionInvoker and the
 actual type you intend to use. Here it is with the fluent API of Unity:

container.RegisterType<IActionInvoker, MyActionInvoker>();

The customization of the action invoker component is an important aspect of the
 extensibility model of ASP.NET MVC. I’ll return to the topic of action invokers in Chapter 11.

Summary
An application built with ASP.NET MVC is primarily a Web application. Modern Web
 applications have more numerous requirements than only a few years ago. For example,
a Web application today has to be SEO-friendly and must likely support full localization to
be able to drive the user’s actions using the user’s specific language and culture. Finally,
 serving a notorious yellow-screen-of-death (namely, one of those default error pages of
ASP.NET) is hardly acceptable; it still happens, but it is really a bad statement about the site.
(An unhandled error has always been a bad thing, but the level of default forgiveness that
users were according only a few years ago today is definitely a thing of the past.)

400 Part III Programming Features

For all these reasons, the infrastructure of any Web applications (and, in this context, the
 infrastructure of ASP.NET MVC applications) need to be stronger and richer. In particular, you
need to pay more attention to the URLs you recognize and design both for SEO and error
handling. You need to design views and controllers to check the current locale and adjust
graphics and messages automatically. You also need to detect the culture and let users switch
among the languages you support.

To achieve many of these goals, you need to design your site for extensibility and separation
of concerns. In practical terms this means applying the principle of Dependency Inversion
extensively and systematically. In summary, a realistic site can hardly do without an IoC
 container today.

This chapter missed another key change that has characterized Web applications in the past
five years—AJAX. How would you do AJAX in an ASP.NET MVC application? That’s just what
I’m going to cover in the next chapter.

 401

Chapter 9

AJAX Capabilities
It matters not what someone is born, but what they grow to be.

—J. K. Rowling

As disappointing as it might sound, the term AJAX (Asynchronous JavaScript and XML) was
coined around 2005 primarily as a concise and cool way to sell a set of technologies, and
a new approach to Web development, to a customer. What initially was simply a clever
 approach to craft nice features inside a Web page eventually became the incarnation of a new
paradigm for writing a new generation of Web applications. The AJAX approach is destined
to last for the foreseeable future or until conditions exist to rebuild the Web from scratch.

AJAX is no longer a plus for the Web; AJAX is a native part of the Web. When you discuss
use-cases and requirements with a customer, as long as a Web front end is involved, AJAX
capabilities are an obvious part of the deal.

I foresee in the near future a scenario where we have two approaches to Web development:
an evolved ASP.NET-based platform for server-side development using a classic
 programming language, and an ad hoc platform for JavaScript-intensive applications. In both
cases, the client has to be rich and capable of placing requests asynchronously.

While waiting for such an exciting future, let’s focus on what we have today for building
a rich user interface for the Web. If AJAX is possible in Web Forms, it has to be possible in
ASP.NET MVC too—and in a similar way. All solutions for AJAX that work in an ASP.NET Web
Forms application can be successfully employed in an ASP.NET MVC application. In addition,
ASP.NET MVC offers a bunch of HTML helpers optimized for offering certain AJAX functions
at a very low cost for the developer.

Overall, the best service that ASP.NET MVC offers in an AJAX context is the total control over
HTML (and subsequently, JavaScript) that it provides regardless of the view engine of choice.
In this chapter, I’ll first review the theme of AJAX programming in ASP.NET as a platform.
Then I’ll focus on the specific AJAX capabilities of the ASP.NET MVC framework.

AJAX in ASP.NET
The AJAX development model revolves around one common software element—the
XMLHttpRequest object. The availability of this object in most browsers’ object models is the
key to the current ubiquity and success of AJAX applications. The XMLHttpRequest object
allows script code to send HTTP requests and handle their responses. With XMLHttpRequest,
developers directly control the placement and outcome of the request. The actual mechanics

402 Part III Programming Features

of the request/response activity doesn’t make any difference to the user. However, the
 possibility of using XMLHttpRequest enables Web developers to build features that ultimately
deliver a much better user experience.

So adding AJAX capabilities to a page requires only a bit of script code, and you can add
AJAX capabilities to any page regardless of the underlying programming platform—be it
classic ASP, ASP.NET, ASP.NET MVC, Java Server Pages, or PHP and so forth.

The use of XMLHttpRequest is hidden in a variety of APIs and exposed at various levels of
 abstraction. In ASP.NET, we can sum it up by mentioning two APIs: partial rendering and
 direct scripting.

Partial Rendering
Partial rendering is an interesting form of compromise between a pure AJAX approach
and the existing code base of an ASP.NET application. The idea behind partial rendering is
that you wrap any portions of the page that might be updated by some user in an ad hoc
panel control. When a postback that refreshes that panel is requested, some “special” code
 executes that hooks up the postback process and returns only the delta of the page that has
changed. That same special code then will take care of updating the current DOM tree with
the fresh content just downloaded.

The Implementation
ASP.NET partial rendering is centered on a special container control—the UpdatePanel
control—that you use to surround portions of existing pages or portions of new pages
 developed with the usual programming model of ASP.NET. A postback request that
 originates within any of these updatable regions is captured by the UpdatePanel control and
resolved asynchronously using XMLHttpRequest. In this way, fresh HTML is downloaded for
the selected region, bypassing the browser and reducing page flickering. Here’s how you use
the UpdatePanel control:

<asp:UpdatePanel runat="server" ID="UpdatePanel1">

 <ContentTemplate>

 <%--

 This region of the page can be updated separately from the rest.

 You only have to configure how and when.

 --%>

 </ContentTemplate>

 <Triggers>

 <%--

 List here server-side events that will cause the content

 of this panel to update asynchronously.

 --%>

 </Triggers>

</asp:UpdatePanel>

 Chapter 9 AJAX Capabilities 403

The UpdatePanel control goes hand in hand with the ScriptManager control. After you have
enabled partial rendering through the script manager, an event handler for the form’s submit
event is registered with the DOM. The handler intercepts any outbound requests and swallows
them. In return, the event handler places a new, and nearly identical, request that runs
 asynchronously. Figure 9-1 compares a classic ASP.NET request with a partial rendering request.

Browser

Classic ASP.NET
ASP.NET Partial

Rendering

Browser

Web Server Web Server

Classic form
submission

model

JavaScript Page
Request Manager

XML
HTTP

Request

HTML
page

HTML
form

Modified
HTML form

Tailor-made
response

HTML
form

Direct DOM
updates via
JavaScript

FIGuRE 9-1 High-level schema of a partial rendering call

The ASP.NET runtime doesn’t treat an asynchronous postback request differently from
a standard one. It finds a proper HTTP handler and sets it to work. The page life cycle
 continues as usual until rendering time approaches. This means that your code-behind class
will receive regular Init and Load events, the view state is properly deserialized, and the state
on controls is restored and updated with posted data. The postback event is then executed,
and controls are further updated according to the results. At this point, you need to render
out some response for the caller.

The normal rendering algorithm for an ASP.NET page consists of a recursive visit of the
tree of controls, starting from the root of the page. In a partial rendering scenario, the
 modified algorithm begins its recursive visit from the root of the UpdatePanel to refresh.
 Post-rendering steps (that is, serializing the new view state) are accomplished as usual and
are in no way different from a standard postback.

The markup produced is serialized as text into a buffer using an internal, record-based
 representation format. This string is the response written to the output stream and received
by the calling instance of XMLHttpRequest.

After the generated response is served back to the page request manager in the browser’s
context (as shown in Figure 9-1), another block of JavaScript code takes care of parsing it up.
The response looks like an array of records where each record might refer to an UpdatePanel

404 Part III Programming Features

section, a hidden field, or perhaps a block of server-generated data to share with the
JavaScript environment.

Any UpdatePanel record is resolved by extracting the markup and attaching that to the
<div> or tag in the DOM with a matching ID. The DOM update occurs through
the innerHTML property, as shown here:

document.getElementById("UpdatePanel1").innerHTML = markup;

Similarly, hidden fields are resolved by loading the new content into the matching DOM
 elements. Finally, server-generated data (referred to as data items) that needs to be loaded
into the JavaScript engine is made available to JavaScript functions and page event handlers.

You can use any number of UpdatePanel controls in your page. The only limitation might be
the total number of controls you end up having in the page if you add too many updatable
panels. Likewise, UpdatePanel controls can be freely nested.

Because a partial rendering page doesn’t interfere much with the standard page life cycle,
any security barrier you might have in your application remains functional. The timing
of an asynchronous postback, in fact, is like that of a postback and occurs after all
 authentication and authorization steps have been taken.

The Good and the Bad
Partial rendering is definitely the easiest way to add AJAX capabilities to an ASP.NET
Web site. The impact on existing code is close to zero. It doesn’t require significant new skills,
doesn’t require exposure to JavaScript, and leaves the application model intact. All that you
need to learn is how to use a small set of new server controls—UpdatePanel, ScriptManager,
and UpdateProgress. No new application architecture is required, and no code refactoring
needs to be done.

Advocates of a pure AJAX approach might say that partial rendering completely misses
the whole point of AJAX. And such a statement is not a false one.

Overall, partial rendering is only one possible way to approach AJAX. It preserves most of
your current investments and is relatively cheap to implement. Partial rendering just makes
your pages refresh in a smarter way, thus delivering the same pleasant effect of a canonical
AJAX feature.

Partial rendering doesn’t turn your existing application into a true AJAX application. There’s
no new architectural point in partial rendering. It’s a great technique to quickly update
 legacy applications, and it’s an excellent choice when you lack the time, skills, or budget to
move on and redesign the application. But in a good number of cases, an improved user
 interface and optimized rendering are all that your users demand. So partial rendering would
perfectly fit in. And, as if we needed more reasons to use it, partial rendering is actually
 tremendously effective.

 Chapter 9 AJAX Capabilities 405

In any case, you should also be aware of the structural limitations of partial rendering. You
might want to start with partial rendering to improve your pages and then move on to other,
more purely AJAX, solutions to fix particular bottlenecks that still remain.

JavaScript will never make you productive; a server-side application model will never give
you the responsiveness and interactivity users loudly demand. Finding the right balance and
making the correct trade-offs is entirely up to you and your creativity. AJAX is cool, but AJAX
is structurally a tough trade-off to make.

Let’s see the other side of the coin: scripting functionalities directly from within the browser.

Note Why is it so darned hard to write pure AJAX applications? AJAX applications are all about
the client, and the client is JavaScript and HTML. Both JavaScript and HTML have significant
 limitations in light of the complexity of today’s applications.

JavaScript is an interpreted language, and it does not have a particularly modern syntax.
Additionally, JavaScript is subject to the implementation that browsers provide. So a feature
might be flaky in one browser and super-optimized in another.

Originally born as a document format, HTML is used more as an application delivery format.
But for this purpose, HTML is simply inadequate because it lacks strong, built-in graphics and
layout capabilities. Silverlight with its embedded Common Language Runtime (CLR), support
for managed languages and full support for Windows Presentation Foundation (WPF), tries
to address both issues.

Direct Scripting
At the highest level of abstraction, Web applications are client/server applications that
 require an Internet connection between the two layers. Before AJAX, this connection
was incorporated in the special client application—the browser. The browser opens the
 connection, clears the user interface, and then updates the screen with the response
 received. With AJAX, the client code gains the ability to bypass the browser and enter user
interface updates without fully refreshing the displayed page—a great step forward toward
usability and rich user experiences.

To make the usability of Web applications grow as close as possible to that of desktop
 applications, the overall software platform must fulfill two key requirements. One is
a client-side infrastructure that can manage the Internet connection with the server.
The other requirement is to have available a public and known programming interface on
the server—an AJAX-specific service layer.

The Overall Idea
Direct scripting refers to the idea of having JavaScript code that calls into a publicly exposed
endpoint, gets transferred data, and uses client logic for binding and rendering. Figure 9-2
gives an overview of the architecture.

406 Part III Programming Features

Browser

HTTP Façade

JavaScript and HTML

Rest of the system
(Business layer, DAL)

Local /
Intranet

Roundtrip
Internet

FIGuRE 9-2 A typical AJAX architecture

The presentation layer is hosted in the browser and communicates via HTTP with an ad hoc
façade made of URLs. Behind the URLs, you have server code at work. The server code can
be exposed in a number of ways, and the approach used is determined by the programming
API you choose. For example, you can choose to expose server code as a WCF service. At the
same time, you can expose client-callable functionality using the controller of an ASP.NET
MVC application that returns JSON data. (I’ll take a deeper look at this specific scenario in the
rest of the chapter.)

The data being exchanged between the presentation layer and the HTTP façade depends on
the client and server APIs and their capabilities. However, most of the time (albeit not always
and not necessarily), the serialization format of choice is JSON.

Invoking the HTTP Façade
Behind an HTTP façade, you can find a classic Web service (one not specifically hosted
on a .NET platform, although it could be) or various flavors of a WCF service, including
REST and WCF Data services (formerly known as ADO.NET Data Services). You can also
find a handmade HTTP handler, which consists of a public URL with some ASP.NET code
 behind. This is the case with ASP.NET MVC controller actions and ASP.NET page methods.

The biggest difference between using a service backed by a technology (such as WCF)
and using handmade HTTP handlers is in how easy it is to get a proxy object to use on the
client. When you add a server-side reference to Web service, you go through a Microsoft
Visual Studio wizard, indicate the URL of the service, specify the desired namespace, and
have the wizard generate a proxy class and add it in the folds of the project solution.

 Chapter 9 AJAX Capabilities 407

When you intend to add a reference to Web service to be consumed from within a client
page, there’s no Visual Studio wizard to help you. Instead, you programmatically add the
 service reference to the page either using the ScriptManager control or via a tailor-made
URL. The following code snippet shows how to use the ScriptManager control:

<asp:ScriptManager ID="ScriptManager1" runat="server">

 <Services>

 <asp:ServiceReference Path="northwind.svc" />

.
 .
 .

 </Services>

</asp:ScriptManager>

The script manager emits the following markup:

<script src="northwind.svc/js" type="text/javascript"></script>

Obviously, you can insert the same <script> tag yourself, skipping a control reference.
The /js suffix is the magic word that instructs the service infrastructure to generate
a JavaScript proxy class for the page code to call into the service. A proxy renders in
JavaScript any aspects of the service contract, including service operations and data
 contracts. Here’s some code that shows how to call a service method from JavaScript:

// Making an async call to method GetCustomerById with a callback

MyApp.Services.NorthwindService.GetCustomerById("ALFKI", onDataAvailable);

The response is being processed by the specified callback, as shown here:

function onDataAvailable(results, context, methodName)

{

 // results is the response obtained from the HTTP façade mapped to a JS object

 // context is any optional data the caller may have passed to the callback

 // methodName indicates the name of the service method invoked

.
 .
 .

}

Not binding to a Web service requires that you parse the response literally to make any
 further decision and update the user interface.

Parsing the raw response is only half the job. The second half consists of updating the
user interface. Most of the time it requires data-binding capabilities and, ideally, an AJAX
framework with specific capabilities, such as the newest ASP.NET AJAX 4 framework from
Microsoft.

The Good and the Bad
Placing direct calls to some remote endpoint gives you the greatest flexibility as you receive
raw data completely devoid of any layout information. This is the gist of AJAX, after all. On
the down side of it, though, you find the JavaScript language and the DOM environment.

408 Part III Programming Features

You can program your presentation logic only by using lines and lines of JavaScript code; you
can make updates only by setting properties on the browser’s DOM. Most of the time, you
can reach a good compromise between complexity and the quantity of code to write and
performance. However, that has to be verified each and every time.

For now, a better and richer JavaScript is possible only through libraries that cover parts
of client-side programming that the language doesn’t natively cover. Classes, networking,
static type checking, and a common and cross-browser model for managing events and
 exploring the document are all features required in modern JavaScript code. Popular libraries,
such as the Microsoft AJAX library, provide just this.

The key trait of the Microsoft AJAX library is the set of extensions to transform JavaScript into
an object-oriented language. JavaScript is not a true object-oriented programming (OOP)
language even though it always has supported objects and also provides a rudimentary
mechanism for prototyping classes and derived classes. The Microsoft AJAX library builds
on top of this basic functionality to add namespace and interface support in addition to
a number of helpful facilities.

In addition to extending the core of the language, for effective scripting you need rich
 libraries that provide higher-level tools for UI tasks. The jQuery library is the de facto
 standard, and the jQuery UI library has become one of the coolest plugins around.

Direct scripting takes you toward JavaScript-intensive applications and a new set of
 programming tools, such as the one coming out of the ASP.NET AJAX 4 development.
If you’re familiar with and feel comfortable with JavaScript today, you can even consider
JavaScript-only sections for a Web application.

AJAX in ASP.NET MVC
Discussing the AJAX capabilities of a given ASP.NET framework entails discussing the way in
which that particular framework hides its own calls to the underlying XMLHttpRequest object.

In the context of ASP.NET MVC, you typically use three types of wrappers for low-level
XMLHttpRequest calls: the jQuery API for AJAX, the JavaScript proxy classes for Web services,
and some native HTML helpers that use a specific, AJAX-oriented JavaScript library that
comes with ASP.NET MVC.

The JavaScript API
ASP.NET MVC owes a large share of its popularity to the full control it yields to developers
when it comes to generating HTML. Full control over HTML also means full control over the
script code being included in the page. The default project template you get in Visual Studio
2010 for ASP.NET MVC stores in the Scripts folder a bunch of JavaScript files, including the
latest jQuery library, as shown in Figure 9-3.

 Chapter 9 AJAX Capabilities 409

FIGuRE 9-3 Default script files inserted in the standard ASP.NET MVC project template

This means that the AJAX API available in jQuery is an effective starting point for
 implementing AJAX functionalities in ASP.NET MVC. As you can also see in Figure 9-3, the
Microsoft AJAX library, and its native support for Web service proxy classes, is another good
option. Let’s start with jQuery, then.

Using jQuery to Perform AJAX Calls
In jQuery, you can have a few shorthand methods to quickly arrange asynchronous calls to
a remote endpoint. All methods, however, leverage the services of a single function—the
ajax function. You use the ajax function, as shown next:

$.ajax(

 {

 type: "POST",

 url: "getOrder.aspx",

 data: "id=1234&year=2007",

 success: function(response) {

 alert(response);

 }

 }

);

The ajax function gets a list of parameters, such as type, url, data, dataType, cache, async,
and success. The dataType parameter indicates the type of the expected response, whereas
success indicates the completion callback. The callback function receives the URL response
as its sole argument.

In addition to ajax, a number of helper methods exist to simplify common operations such
as downloading a script. Table 9-1 lists such helpers.

410 Part III Programming Features

TABLE 9-1 Shorthand methods in jQuery for AJAX functionalities

Method Description

jQuery.get() Gets a URL, and performs an HTTP GET request that loads data from the server.

jQuery.getJSON() Gets a URL, and loads JSON-encoded data from the server through a GET
HTTP request. After the request is received, the response is transformed
into a JavaScript object.

jQuery.getScript() Gets a URL, and loads a JavaScript file from the server using a GET HTTP
 request. After the request is received, the script is automatically executed.

jQuery.load() Gets a URL, and loads data and markup from the server. After the data is
 received, the response is inserted into the DOM at a specified position.

jQuery.post() Gets a URL, and performs an HTTP POST request against the server.

As you can see, all the methods in Table 9-1 perform basic HTTP operations (a GET or POST
request) and differ with regard to the additional tasks they perform and the expected format
of the response.

For example, the getJSON method expects a JSON string as a result. If a syntax error is
 detected in the downloaded string, the request fails. Note also that if the URL points to
a remote server, the request is converted to a JSONP request. (See the following note for
more details about JSON with Padding, or JSONP for short.)

Note For security reasons, modern browsers require that any calls that go through
XMLHttpRequest and frames don’t trespass the boundaries of the local server. Therefore, no
cross-domain calls are allowed via script.

Honestly, for years this was not perceived as a terrible limitation, but it started being viewed as
such with the advent of AJAX. By default, you can’t download data of any kind via script from
a remote location. However, you can create a <script> tag on the fly and make it point to any
URL you know, regardless of the location.

JSONP is a special convention through which you request a server that supports it to give you
the response (be it data or script) of a given call. If simply pointed from a <script> tag, however,
the response is simply downloaded but not necessarily processed. Here’s where the JSONP
convention kicks in. The JSONP convention suggests you append a ?callback=xxx segment to
the URL. The xxx placeholder is a local script function you want to be invoked to process the
response. For example, if getOrder.aspx returns the JSON representation of an order, the related
JSONP call might look like getOrder.aspx?callback=showIt, where showIt is a local JavaScript
 function that processes the information about the order. The getJSON method in jQuery is smart
enough to detect whether the URL passed in is local or not. If it is not, it automatically turns the
JSON call into a JSONP call using the provided callback function to pad the URL.

Using the jQuery AJAX API requires that you provide a callback to handle the response.
Here’s an example that shows how to get a list of customers after a button click:

<script type="text/javascript">

 $(document).ready(function() {

 Chapter 9 AJAX Capabilities 411

 $('#Button1').click(function() {

 $.getJSON("/Home/GetCustomers",

 null,

 function(data) { showCustomers(data); });

 });

 });

</script>

The URL invoked by getJSON is related to the action GetCustomers on the Home controller.
The method is expected to return a JSON object that the provided callback processes to
 refresh the user interface. In the section “The Controller Façade,” I’ll return to this example
to discuss the structure of a controller action that returns JSON data.

Invoking Web Services from ASP.NET MVC
Any ASP.NET Web Forms developer will probably tell you that the ScriptManager control
is necessary in order to have free JavaScript proxy classes for a referenced Web service.
In reality, this is not strictly necessary because you can simply reference the service URL with
the /js suffix from within a <script> tag:

<script src="northwind.svc/js" type="text/javascript"></script>

In this way, you have an easy-to-use JavaScript proxy available without the burden of dealing
with server controls. And it is not a secondary point that you can switch to a custom view
engine (such as, say, Spark) while being able to leverage a JavaScript proxy for Web services.
In Spark and other custom view engines, in fact, you might not be allowed to use ASP.NET
server controls in the source code of a view.

The ASP.NET AJAX 4 Library
The total control over HTML and JavaScript that ASP.NET MVC offers also makes smooth
 integration between an ASP.NET MVC view and the ASP.NET AJAX 4 library possible.
The ASP.NET AJAX 4 library comes with strong support for client-side data binding and
 conditional template rendering.

The library supplies a formal syntax for you to define an HTML template that will be
 populated with data during a binding operation. The library also makes available a rich
 client control—the DataView component—to link a remote data source to an HTML
 template and populate it entirely from the client.

In ASP.NET AJAX, an HTML template is essentially a <div> tag that contains fixed and
 repeatable parts. A fixed part is a fragment of HTML that is emitted only once—such
as a header or footer. A repeatable part is an HTML fragment that is linked to data and
 repeated for each bound element.

412 Part III Programming Features

An HTML template is initially hidden from view, and the framework takes care of turning on
the visibility attribute of interested parts as appropriate. A common way to control visibility
is by defining in the page a sys-template cascading style sheet (CSS) style, as shown here:

<style type="text/css">

 .sys-template { display:none; visibility:hidden; }

</style>

The sys-template style is the discriminating element that determines whether a fragment of
HTML will be emitted once or repeated. Let’s consider the following template:

<div>

 <table>

 <tr>

 <th>SYMBOL</th>

 <th>LAST</th>

 <th>CHANGE</th>

 </tr>

 <tbody id="grid" class="sys-template">

 <tr>

 <td align="left">{{ Symbol }}</td>

 <td align="right">{{ Quote }}</td>

 <td align="right">{{ Change }}</td>

 </tr>

 </tbody>

 </table>

</div>

The table contains a <tbody> element styled as a sys-template. That part will be repeated
for each bound item. To identify a repeatable part, you use a unique ID. In this case, the ID
is grid. Names within {{ . . . }} identify public properties on the data source whose content has
to be displayed.

To attach data to this template, you can use a DataView component. The following code
snippet shows how to create a DataView programmatically upon page loading:

<script type="text/javascript">

function pageLoad() {

 $create(

 Sys.UI.DataView,

 {},

 {},

 {},

 $get("grid")

);

}

</script>

 Chapter 9 AJAX Capabilities 413

After creation, the DataView is attached to the specified DOM element—the grid element
in the example. As a result, any data associated with the data property of the DataView
is bound to the template. The DataView can receive data programmatically or via a Web
 service. The following code snippet shows how to configure a DataView declaratively:

<div>

 <table>

 <tr>

 <th>SYMBOL</th>

 <th>LAST</th>

 <th>CHANGE</th>

 </tr>

 <tbody id="grid" class="sys-template"

 sys:attach="dataview"

 dataview:data="{{ stockQuotes }}">

 <tr>

 <td align="left">{{ Symbol }}</td>

 <td align="right">{{ Quote }}</td>

 <td align="right">{{ Change }}</td>

 </tr>

 </tbody>

 </table>

</div>

In this case, it is assumed that stockQuotes is a JavaScript expression that produces
a non-empty result.

In summary, ASP.NET MVC supports a wide range of JavaScript APIs through which you can
code any presentation and rendering logic in pure JavaScript so that many user actions are
handled directly within the realm of the Web browser. Server data is provided by ad hoc
HTTP endpoints. These endpoints can be generalized, Web-based services—in the widest
possible scope you can give to this term—as well as plain controller actions exposed by
the same ASP.NET MVC application. Let’s see how to tweak a controller action method to
 properly support a JavaScript call.

The Controller Façade
In Chapter 4, “Inside Controllers,” we thoroughly discussed the structure and expected
 behavior of ASP.NET MVC controllers. Any public method on a controller class that is not
decorated with the NonAction attribute can be invoked from a client using any JavaScript API.

The response a client receives depends on the return value of the controller method.
In Chapter 4, we reviewed the various results a caller can get from a controller. The most
common result is expressed via an instance of the ViewResult class, which essentially wraps
an HTML string. However, other result types can be returned, such as JsonResult.

Boykma
Text Box
Download from Wow! ebook <www.wowebook.com>

414 Part III Programming Features

Returning JSON Content
Earlier in the chapter, I presented a short JavaScript code snippet using the getJSON function
from the jQuery library to grab some JSON data from a URL. For completeness, the code
snippet is reproduced here:

<script type="text/javascript">

 $(document).ready(function() {

 $('#Button1').click(function() {

 $.getJSON("/Home/GetCustomers",

 null,

 function(data) { showCustomers(data); });

 });

 });

</script>

When the document is fully loaded, a handler is registered for the click event of the specified
button, named Button1. The handler uses the getJSON function to connect to the /Home/
GetCustomers URL. The sample call doesn’t pass any parameters to the URL—the second
 parameter is null—and it sets a callback to process the response.

Here’s a possible definition for the invoked action method:

public JsonResult GetCustomers()

{

 // Grab some data to return

 var customers = CustomerRepository.GetAll();

 // Serialize to JSON and return

 return this.Json(customers);

}

Defined on the Controller class, the Json method creates a JsonResult object. The purpose
of the JsonResult object is to serialize the specified .NET object—a customer list in the
 example—to the JSON format. The Json method has a few overloads through which you
can specify the desired content type string (with the default being application/json) and
 request behavior. The request behavior consists of allowing or denying JSON content over
an HTTP GET request.

In ASP.NET MVC 2, by default JSON content is not delivered through an HTTP GET request.
This means that the previous code using getJSON will fail in ASP.NET MVC 2 unless the
 controller’s method is modified to allow JSON content to be served over HTTP GET requests:

public JsonResult GetCustomers()

{

 // Grab some data to return

 var customers = CustomerRepository.GetAll();

 // Serialize to JSON and return

 return this.Json(customers, JsonRequestBehavior.AllowGet);

}

 Chapter 9 AJAX Capabilities 415

Obviously, the reason why ASP.NET MVC 2 prevents controllers from returning JSON data
from HTTP GET requests is security. However, enabling JSON over HTTP GET requests is not
problematic as long as you don’t return sensitive data packed in arrays.

You can use the getJSON method to pass parameters to the controller action. In this case,
you use the second parameter of the getJSON method as shown here:

$.getJSON("/Home/GetCustomers", {country:"USA"},

 function(data) { showCustomers(data); });

You can use the parameter of getJSON to compose a dictionary of name/value pairs to pass
to the endpoint. The content of the dictionary is serialized to the query string of the URL.
The preceding code, for instance, generates the following URL:

http://yourserver/Home/GetCustomers?country=USA

The default model binder will catch any URL parameters and pass them to the method:

public JsonResult GetCustomers(string country)

{

 // Grab some data to return

 var customers = CustomerRepository.GetAll(country);

 // Serialize to JSON and return

 return this.Json(customers, JsonRequestBehavior.AllowGet);

}

Let’s see now how you can process JSON data from JavaScript. According to getJSON, the
response from the URL is passed to the specified callback and can be parsed and used to
 update the user interface.

function showCustomers(data)

{

 // Get the reference to the drop-down list

 var list = $("#ddCustomerList")[0];

 // Fill the list

 for (var i = 0; i < data.length; i++)

 {

 var customer = data[i];

 var option = new Option(customer.CompanyName, customer.CustomerID);

 list.add(option);

 };

};

The preceding sample code populates a drop-down list with the names of customers.

Returning JSONP Content
As mentioned, JSONP is a convention used by some sites to expose their JSON content
in a way that makes it easier for callers to consume data via script even from an external
 domain. The trick is recognizing an additional parameter in the URL that contains the name

416 Part III Programming Features

of the JavaScript function to invoke around the JSON content to be returned. In other words,
an HTTP endpoint that supports JSONP is capable of returning the following instead of the
plain content of the jsonData string:

yourFunction(jsonData)

In the example, yourFunction is a user-defined JavaScript function whose name is passed
through a conventional URL parameter. For example, consider the following URL that gets
you a few pictures of cats from Flickr:

http://api.flickr.com/services/feeds/photos_public.gne?tags=cat&format=json&jsoncallback=?

As you can see, the last piece of the URL is a parameter named jsoncallback. The value
 assigned to the parameter indicates the name of the JavaScript function to place around the
JSON string to return. As far as Flickr is concerned, jsoncallback is the conventional name of
the JSONP extra parameter. If you define your own JSONP data provider, you are responsible
for supporting and documenting an analogous parameter. Let’s briefly consider an example:

public JsonpResult GetCustomers()

{

 // Grab some data to return

 var customers = CustomerRepository.GetAll();

 // Serialize to JSON and return

 return this.Jsonp(customers, JsonRequestBehavior.AllowGet);

}

The GetCustomers method now returns a JsonpResult object obtained through a call made to
a new Jsonp method. No Jsonp method and no JsonpResult objects exist in ASP.NET MVC 2,
however. Let’s define the JsonpResult class:

public class JsonpResult : JsonResult

{

 private const string JsonpCallbackName = "callback";

 public override void ExecuteResult(ControllerContext context)

 {

 if (context == null)

 throw new ArgumentNullException("context");

 if ((JsonRequestBehavior == JsonRequestBehavior.DenyGet) &&

 String.Equals(context.HttpContext.Request.HttpMethod, "GET"))

 throw new InvalidOperationException();

 HttpResponseBase response = context.HttpContext.Response;

 if (!String.IsNullOrEmpty(this.ContentType))

 response.ContentType = this.ContentType;

 else

 response.ContentType = "application/json";

 if (this.ContentEncoding != null)

 response.ContentEncoding = this.ContentEncoding;

 Chapter 9 AJAX Capabilities 417

 if (this.Data != null)

 {

 string buffer;

 HttpRequestBase request = context.HttpContext.Request;

 var serializer = new JavaScriptSerializer();

 if (request[JsonpCallbackName] != null)

 buffer = String.Format("{0}({1})", request[JsonpCallbackName],

 serializer.Serialize(Data));

 else

 buffer = serializer.Serialize(Data);

 response.Write(buffer);

 }

 }

}

The class is nearly the same as JsonResult except for a small change in the ExecuteResult
method. Before serializing to JavaScript, the code checks whether the conventional JSONP
parameter has been passed with the request and fixes the JSON string accordingly.

At this point, the implementation of the Jsonp method is straightforward:

protected JsonpResult Jsonp(object data, JsonRequestBehavior behavior)

{

 return new JsonpResult

 {

 Data = data,

 JsonRequestBehavior = behavior

 };

}

The Jsonp method will be added to the controller classes in cases where you intend to
 support JSONP, or it will be added to a base class if you want to have JSONP available
throughout the whole application.

Returning JavaScript Content
The $.getScript method in the jQuery library is dedicated to downloading script files.
When you invoke the method, you pass it a URL that just returns JavaScript. The downloaded
code is then executed, and execution takes place before the callback is invoked:

$.getScript("/Home/About");

To return JavaScript code as a string, here’s what you need to do in your controller:

public JavaScriptResult SayHello()

{

 return new JavaScriptResult() { Script = "alert('Hello');" };

}

418 Part III Programming Features

The implementation of the JavaScriptResult class is simple, as the following code snippet
shows:

public override void ExecuteResult(ControllerContext context)

{

 if (context == null)

 throw new ArgumentNullException("context");

 HttpResponseBase response = context.HttpContext.Response;

 response.ContentType = "application/x-javascript";

 if (this.Script != null)

 response.Write(this.Script);

}

The ExecuteResult method of the JavaScriptResult class simply sets the content type
and writes out the script as a string.

What about sending out an entire JavaScript file selected by the controller? You can write
an enhanced action result class:

public class JavaScriptFileResult : JavaScriptResult

{

 public JavaScriptFileResult(string filename)

 {

 FileName = fileName;

 }

 public String FileName {get; set;}

 public override void ExecuteResult(ControllerContext context)

 {

 if (context == null)

 throw new ArgumentNullException("context");

 HttpResponseBase response = context.HttpContext.Response;

 response.ContentType = "application/x-javascript";

 response.WriteFile(FileName);

 }

}

And finally, you invoke the JavaScriptFileResult class as follows:

public JavaScriptResult GetFile(string file)

{

 // Run your own logic here

.
 .
 .

 // Return the selected JavaScript file

 return new JavaScriptResult() { FileName = file };

}

 Chapter 9 AJAX Capabilities 419

The logic you need to run before downloading a JavaScript file can range from selecting
a localized version of the script to versioning, and even versioning with ad hoc debug and
tracing information.

Note If you have a link in your view that points to a controller action defined to return
a JavaScriptResult object, expect the browser to attempt a download of the content. This is because
the Accept header in the request is not set to text/javascript, application/javascript, or both.

Returning Markup
When it comes to AJAX, service methods that return plain HTML have never been particularly
popular. The reason is that the returned markup inevitably contains both data and the layout,
thus consuming more bandwidth than a classic AJAX request that returns only raw data.

The idea of a service method that returns some markup is not a far-fetched one, however.
The HTML Message pattern describes it as an approach that is worth considering, especially
in situations where you need to compose the user interface by assembling various relatively
static pieces, such as subviews and user controls.

In jQuery, you have the load function to connect to a given URL and download markup.
Nicely enough, though, the load function also appends the markup to the DOM subtree you
specify:

$('.grid).load("/Home/GetCustomers",

 function() {

 alert("Refresh the view now.");

 }

);

The preceding example uses the load function to populate a DOM element named grid with
the results returned by the specified ASP.NET MVC route. The granularity of the load function
can be even finer because it allows you to select only a fraction of the view and always
through a CSS-based query syntax:

$('.grid).load("/Home/DataGrid #body",

 function() {

 alert("Refresh the view now.");

 }

);

In this case, the load method downloads any content returned by the URL—the /Home/
DataGrid URL in the example. However, the jQuery library then parses the entire response
and filters it based on the additional information. As a result, only the elements that match
the subquery—the #body expression in the example—will be processed as usual and
 attached to the current page DOM.

420 Part III Programming Features

To fully support the jQuery load function, you might want to have methods that return
a ViewResult object or, better yet, a PartialViewResult object.

AJAX Helpers in ASP.NET MVC
Because ASP.NET MVC is mostly focused on giving developers total control over the HTML
being output, probably the most natural way of incorporating AJAX capabilities into a view
is using direct scripting and jQuery functions. In ASP.NET MVC, you are never going to face
issues with element IDs, as is too often the case with Web Forms. You might know exactly
the ID used to reference a given HTML element and be able to address that via script in
a safe way. (Total control over the IDs of HTML elements even when HTML is generated from
a server control is a feature you gain in ASP.NET 4.)

At any rate, if you feel a bit uncomfortable going through an intensive JavaScript experience,
you might wonder what else exists in ASP.NET MVC to code some good AJAX functions.
As an example of what’s available, you have a few AJAX-enabled HTML helpers, such
as action links.

The AjaxHelper Class
ASP.NET MVC comes with the AjaxHelper class, which is responsible for emitting script
and markup for asynchronous requests. An instance of the AjaxHelper class is exposed out
of the ViewPage class through the Ajax property, which is defined as follows:

public class ViewPage : Page, IViewDataContainer

{

.
 .
 .

 public AjaxHelper Ajax { get; set; }

}

The AjaxHelper class adds any necessary support that is required for implementing AJAX
 features within an ASO.NET MVC view. The class is defined as shown here:

public class AjaxHelper

{

 public AjaxHelper(ViewContext context, IViewDataContainer container);

 public AjaxHelper(ViewContext context, IViewDataContainer container,

 RouteCollection routeCollection);

 // Methods

 public string JavaScriptStringEncode(string message);

 // Properties

 public static string GlobalizationScriptPath { get; set; }

 public RouteCollection RouteCollection { get; private set; }

 public ViewContext ViewContext { get; private set; }

 public ViewDataDictionary ViewData { get; }

 public IViewDataContainer ViewDataContainer { get; private set; }

}

 Chapter 9 AJAX Capabilities 421

Table 9-2 describes each of the public members of the class.

TABLE 9-2 Members of the AjaxHelper class

Member Description

JavaScriptStringEncode The method formats the specified string as a JSON
string. The method uses JavaScriptSerializer internally.

GlobalizationScriptPath The property gets and sets the path for localized scripts to be
used by the extension methods of the class. The default path for
 localized scripts is ~/Scripts/Globalization.

RouteCollection The property gets the collection of URL routes for the application.

ViewContext The property gets the context information about the view.

ViewData The property gets the current view data dictionary. The property is
implemented as a plain accessor for the ViewData property of the
ViewDataContainer object.

ViewDataContainer The property gets the view data container—that is, a container class
that currently includes only the ViewData dictionary.

The AjaxHelper class also has a generic version—AjaxHelper<TModel>—used for rendering
HTML in AJAX scenarios within a strongly typed view. The generic version just implements
the ViewData property differently to expose it as a ViewDataDictionary<TModel> object.

More important than the source code of the AjaxHelper class itself is the list of the extension
methods defined for it by the ASP.NET MVC framework.

Extension Methods for the AjaxHelper Class
There are not too many extension methods defined for the AjaxHelper class, even though the
ones defined are important. The extension methods are outlined in Table 9-3.

TABLE 9-3 Extension Methods for the AjaxHelper class

Method Description

ActionLink Emits an anchor tag pointing to the URL for the specified action.

BeginForm Emits a form tag using some ad hoc JavaScript code to submit any
 content. The URL of the action is expressed in the form of an action link.

BeginRouteForm Emits a form tag using some ad hoc JavaScript code to submit any
 content. The URL of the action is expressed in the form of a route link.

RouteLink Emits an anchor tag pointing to the URL for the specified route.

Each extension method comes with a long list of overloads to give developers a chance to
specify an AJAX request with or without route parameters, HTML attributes, and so forth.
As an example, here’s the full list of overloads defined for the ActionLink method:

public static MvcHtmlString ActionLink(this AjaxHelper ajaxHelper,

 string linkText,

 string actionName,

 AjaxOptions ajaxOptions);

422 Part III Programming Features

public static MvcHtmlString ActionLink(this AjaxHelper ajaxHelper,

 string linkText,

 string actionName,

 object routeValues,

 AjaxOptions ajaxOptions);

public static MvcHtmlString ActionLink(this AjaxHelper ajaxHelper,

 string linkText,

 string actionName,

 string controllerName,

 AjaxOptions ajaxOptions);

public static MvcHtmlString ActionLink(this AjaxHelper ajaxHelper,

 string linkText,

 string actionName,

 RouteValueDictionary routeValues,

 AjaxOptions ajaxOptions);

public static MvcHtmlString ActionLink(this AjaxHelper ajaxHelper,

 string linkText,

 string actionName,

 object routeValues,

 AjaxOptions ajaxOptions,

 object htmlAttributes);

public static MvcHtmlString ActionLink(this AjaxHelper ajaxHelper,

 string linkText,

 string actionName,

 string controllerName,

 object routeValues,

 AjaxOptions ajaxOptions);

public static MvcHtmlString ActionLink(this AjaxHelper ajaxHelper,

 string linkText,

 string actionName,

 string controllerName,

 RouteValueDictionary routeValues,

 AjaxOptions ajaxOptions);

public static MvcHtmlString ActionLink(this AjaxHelper ajaxHelper,

 string linkText,

 string actionName,

 RouteValueDictionary routeValues,

 AjaxOptions ajaxOptions,

 IDictionary<string, object> htmlAttributes);

public static MvcHtmlString ActionLink(this AjaxHelper ajaxHelper,

 string linkText,

 string actionName,

 string controllerName,

 object routeValues,

 AjaxOptions ajaxOptions,

 object htmlAttributes);

public static MvcHtmlString ActionLink(this AjaxHelper ajaxHelper,

 string linkText,

 string actionName,

 string controllerName,

 RouteValueDictionary routeValues,

 AjaxOptions ajaxOptions,

 IDictionary<string, object> htmlAttributes);

 Chapter 9 AJAX Capabilities 423

public static MvcHtmlString ActionLink(this AjaxHelper ajaxHelper,

 string linkText,

 string actionName,

 string controllerName,

 string protocol,

 string hostName,

 string fragment,

 object routeValues,

 AjaxOptions ajaxOptions,

 object htmlAttributes);

public static MvcHtmlString ActionLink(this AjaxHelper ajaxHelper,

 string linkText,

 string actionName,

 string controllerName,

 string protocol,

 string hostName,

 string fragment,

 RouteValueDictionary routeValues,

 AjaxOptions ajaxOptions,

 IDictionary<string, object> htmlAttributes);

As you can see, all extension methods return a special flavor of a string type—the
MvcHtmlString type—that you briefly met in Chapter 5, “Inside Views.” MvcHtmlString
 indicates that the string it represents has to be considered as a sanitized piece of HTML that
should not be further encoded.

You might want to be aware of some interesting aspects of MvcHtmlString that touch on the
actual integration between ASP.NET MVC 2 and the underlying ASP.NET platform. Discussing
such internal aspects of MvcHtmlString would probably be a digression from the current
topic, so you can find out more in the sidebar “Inside the MvcHtmlString Class.”

Getting back to the extension methods on the AjaxHelper class, the essential fact is that
all extension methods in Table 9-3 emit a link that when clicked triggers an asynchronous
 request to the specified URL. Let’s then delve deeper into action links.

Inside the MvcHtmlString Class
ASP.NET 4 comes with a new subsystem for auto-encoding HTML text. When you
have a code block, by simply using the colon symbol (:) you instruct the runtime to
 HTML-encode any text being displayed. Here’s an example:

<%: "<script>alert('Hello');</script>" %>

The net result of the expression is outputting the script command as plain text. What if
you emit text in the code block from an existing utility that already provides sanitized
HTML? You might end up in a situation like the one illustrated next:

<%: Server.HtmlEncode("<script>alert('Hello');</script>") %>

424 Part III Programming Features

In this case, the original text will be encoded twice—once because of the explicit call
to HtmlEncode and once because of the : symbol in the code block. To prevent this
nasty situation, the auto-encoding subsystem has been designed to recognize special
strings that don’t have to be further encoded. Note that the subsystem doesn’t really
check whether the string is already encoded; it simply looks at whether or not the
string belongs to a special new class and exposes a special interface—the IHtmlString
interface. Put another way, the auto-encoding subsystem is not really idempotent, but
it knows when it has to stop.

You should also be aware that IHtmlString is known to the new auto-encoding
 subsystem of ASP.NET 4 and is supported by HttpUtility.HtmlEncode, but it is blissfully
ignored by the HtmlEncode method on the Server object. As a result, the following
code would work as expected and avoid double encoding. It won’t work that way,
 however, if you replace HttpUtility.HtmlEncode with Server.HtmlEncode.

<%=

 HttpUtility.HtmlEncode(

 new HtmlString(

 HttpUtility.HtmlEncode("<script>alert('Hello');</script>")

)

)

%>

So what about ASP.NET MVC?

ASP.NET MVC 2 is not compiled for each .NET platform. Instead, the system.web.mvc
assembly is built only for ASP.NET 3.5 SP1 and then is included with both Visual Studio
2008 SP1 and Visual Studio 2010 with product-specific tooling. So it’s just one assembly
taking advantage of the .NET platform’s backward compatibility. How can you take
 advantage of IHtmlString and the auto-encoding feature that is defined for ASP.NET 4
and requires the .NET 4 platform?

As mentioned, ASP.NET MVC 2 comes with the MvcHtmlString type defined as follows:

public class MvcHtmlString

{

 private static readonly MvcHtmlStringCreator _creator;

 static MvcHtmlString()

 {

 _creator = GetCreator();

.
 .
 .

 }

 private static MvcHtmlStringCreator GetCreator()

 {

.
 .
 .

 }

.
 .
 .

}

 Chapter 9 AJAX Capabilities 425

The first consideration to make is that the class doesn’t implement IHtmlString.
The reason is fairly obvious—there’s no such interface in .NET 3.5 SP1. Subsequently,
any instances of the MvcHtmlString class are created via a factory—the MvcHtmlString.
Create method. The factory checks whether the IHtmlString interface is available; if
it is not available, the factory proceeds with the dynamic generation of a type that
 implements the interface.

In the end, the auto-encoding subsystem of ASP.NET 4 will be able to handle objects
of type MvcHtmlString because they actually will get a proxy that offers the proper
interface. Finally, let me clarify something that could be the source of trouble and
 misunderstandings: neither HtmlString in ASP.NET 4 nor MvcHtmlString in ASP.NET
MVC 2 perform any internal HTML encoding. They are simple string wrappers that, by
exposing an interface, tell the ASP.NET 4 auto-encoding infrastructure not to further
encode their content.

AJAX Action Links
An action link is an HTML helper that emits a hyperlink bound to a piece of JavaScript
code. As a result, when you click on the hyperlink the URL is invoked asynchronously and
a JavaScript callback runs when the response is ready. Here’s an example:

<%= Ajax.ActionLink("Show catalog", "Index",

 new AjaxOptions

 {

 OnSuccess="fillProductList"

 })

%>

In this case, the ActionLink method generates a hyperlink that points to the Index action and
displays the “Show catalog” text.

What about the controller? When the ActionLink code block is processed, the name of the
controller is resolved to the controller that is processing the view, if no other controller is
specified. As you saw earlier, if the controller is different you simply pick up another overload
of the method.

The ActionLink method emits the following JavaScript call for the previous code block:

<a href="/Products/Index"

 onclick="Sys.Mvc.AsyncHyperlink.handleClick(

 this,

 new Sys.UI.DomEvent(event),

 {

 insertionMode: Sys.Mvc.InsertionMode.replace,

 onSuccess: Function.createDelegate(this, fillProductList)

 }

);">

 Show catalog

426 Part III Programming Features

To use the ActionLink method successfully, you must link both MicrosoftAjax.js and
MicrosoftMvcAjax.js from your application. Both files can be linked from your site or from
the Microsoft content delivery network (CDN). These files are also automatically added to the
project you create via Visual Studio and are available from the Scripts folder. The following
listing shows how to link ASP.NET MVC script files from the Microsoft CDN if you don’t want
to host them on your site:

<script type="text/javascript"

 src="http://ajax.microsoft.com/ajax/4.0/MicrosoftAjax.js">

</script>

<script type="text/javascript"

 src="http://ajax.microsoft.com/ajax/mvc/MicrosoftMvcAjax.js">

</script>

You use the AjaxOptions class to indicate additional parameters for an AJAX action link.

AJAX Options
The AjaxOptions class groups a few settings you can use to customize an AJAX request.
An instance of the AjaxOptions class is required by all overloads of the ActionLink method.
Not all of the properties are to be set, however. As mentioned, though, at the very minimum,
you might want to specify the OnSuccess callback to decide what to do if the request
completes successfully and some data is made available to the client. Note, however, that
OnSuccess is not a mandatory parameter, as you might have a fire-and-forget sort of call (for
example, an update) that has no response for the user.

The signature of the class AjaxOptions is listed here:

public class AjaxOptions

{

 public string Confirm { get; set; }

 public string HttpMethod { get; set; }

 public InsertionMode InsertionMode { get; set; }

 public string LoadingElementId { get; set; }

 public string OnBegin { get; set; }

 public string OnComplete { get; set; }

 public string OnFailure { get; set; }

 public string OnSuccess { get; set; }

 public string UpdateTargetId { get; set; }

 public string Url { get; set; }

}

Table 9-4 summarizes the role that each property of AjaxOptions plays.

TABLE 9-4 Members of the AjaxOptions class

Property Description

Confirm Indicates the JavaScript function to call to have a confirmation before the
request executes.

HttpMethod Indicates the HTTP method to use for the request.

 Chapter 9 AJAX Capabilities 427

Property Description

InsertionMode Indicates the insertion mode for any content downloaded that has
to be injected in the current DOM.

LoadingElementId Indicates the ID of the DOM element to be displayed while the
 request is ongoing.

OnBegin Indicates the JavaScript function to call before the request executes.

OnComplete Indicates the JavaScript function to call when the request has
 completed.

OnFailure Indicates the JavaScript function to call when the request completes
with a failure.

OnSuccess Indicates the JavaScript function to call when the request completes
 successfully.

UpdateTargetId Indicates the ID of the DOM element to be updated with any HTML
 content downloaded.

Url Indicates the target URL of the request if it is not already specified
in the markup, such as when a link or a form are used.

During the execution of an AJAX request, three JavaScript callbacks might be involved.
The first is OnBegin, which fires just before the request is placed. Next, you receive
OnComplete followed by either OnSuccess or OnFailure.

AJAX action links provide a ready-made infrastructure for displaying progress information
and performing DOM updates on the fly. In particular, the properties of LoadingElementId
and UpdateTargetId lend themselves well to displaying a quick progress message and then
updating a piece of the user interface.

Dealing with the Client-Side Events
Let’s consider an example of an AJAX action link where you need a callback function to
 process the response. An action link callback takes the following form:

function fillProductList(callContext)

{

 var response = callContext.get_data();

.
 .
 .

};

The parameter callContext is a JavaScript object of type AjaxContext. The members are listed
in Table 9-5.

TABLE 9-5 Members of the AjaxOptions class for JavaScript

Property Description

data Indicates the response being returned.

insertionMode Indicates the insertion mode for the response.

428 Part III Programming Features

Property Description

loadingElement Indicates the DOM element used to show feedback during the request.

request Indicates the library object that incorporates the Web request.

response Indicates the internal object used to execute the request.

updateTargetId Indicates the DOM element used to update the user interface.

The member named data contains the response. Note that data is implemented as a string.
If it is a JSON string, you must use the eval function to transform it into a usable JavaScript
object.

// Assuming that the AJAX call returned an array of

// products as a JSON string

function fillProductList(callContext)

{

 var response = callContext.get_data();

 var products = eval(response);

 // Process the list of products

.
 .
 .

};

The JavaScript AjaxContext object contains members such as request and response, which
are useful in preliminary events such as OnBegin rather than when a request has completed
successfully. Note that request is an object of type Sys.Net.WebRequest, whereas response is
an object of type Sys.Net.WebRequestExecutor. Both types are defined in the MicrosoftAjax.js
library.

Another feature that the AJAX support in ASP.NET MVC makes easy to implement is updating
the user interface with the results downloaded from the server.

Partial Rendering in ASP.NET MVC
If you look at it in a technology-agnostic way, partial rendering simply refers to the
 application’s ability to refresh only a fragment of the current view in response to specific
user actions. You can use the more neutral term of selective update if partial rendering makes
you think inevitably of Web Forms.

AJAX action links can be used to trigger asynchronous calls, grab some HTML content,
and use that content to refresh a specific section of the existing view.

 Chapter 9 AJAX Capabilities 429

Updating the User Interface
Let’s consider an example where an AJAX action link is used to get details about a customer.
Here’s the code you need:

<%= Ajax.ActionLink("Details", "/Customer/GetCustomerDetails", new { id = "ALFKI" },

 new AjaxOptions { HttpMethod="GET",

 LoadingElementId="lblWait",

 UpdateTargetId="pnlDetails"

 })

%>

The link calls into the GetCustomerDetails method on the Customer controller and passes
an ID of ALFKI. The following action method runs and produces some response:

public string GetCustomerDetails(string id)

{

 var customer = CustomerRepository.Find(id);

 if (customer != null)

 return FormatAsMarkup(customer);

 return "No data found.";

}

The action method returns an HTML string that is ready to be incorporated in the client
page. In this case, I’m assuming that you’ll build the HTML programmatically. If you have
a user control for this purpose, you can return a PartialViewResult as well.

During the request, ASP.NET MVC temporarily displays the content of the panel named
lblWait to indicate that an operation is in progress. When the operation finishes, the panel is
automatically hidden and the response is appended to the DOM as the new content of the
element named after the UpdateTargetId parameter. Figure 9-4 shows the request in action.

FIGuRE 9-4 An AJAX request waiting for a response and updating the view

430 Part III Programming Features

When you set the UpdateTargetId member of the JavaScript AjaxContext object, you assume
that the response you are going to get will come in a format suitable for browser rendering.
It is important to clarify that no check is made by the framework in this regard.

Furthermore, you can control the way in which such a response is incorporated in the
 existing document object model. The InsertionMode member does just that. Its default value
is Replace, meaning that the entire subtree rooted in the element will be wiped out and
 replaced with the new content. Possible values for the InsertionMode member come from the
following object:

Sys.Mvc.InsertionMode.prototype = {

 replace: 0,

 insertBefore: 1,

 insertAfter: 2

}

As you can see, in addition to replacing the existing content, other options exist—such as
 inserting the new markup before or after the existing content.

Posting Forms the AJAX Way
In addition to using hyperlinks, you might want to post the content of an entire input form,
trigger some server-side processing, and then refresh the user interface accordingly.
In ASP.NET MVC, a specific AJAX helper also exists to enhance the <form> element.

The following code posts the content of the form to the Update method of the current
 controller. The AJAX request executes according to the specified options. The user will see
an update progress indicator, and the user interface is updated at the end.

<% using (Ajax.BeginForm("Update",

 new AjaxOptions {

 LoadingElementId = "panelPleaseWait",

 InsertionMode = InsertionMode.Replace,

 UpdateTargetId = "panelResults" }))

 { %>

 <% Html.TextBox("Name", ViewData.Model.Name); %>

 <% Html.TextBox("Date", ViewData.Model.Date); %>

 <input type="submit" value="Save" />

<% } %>

:

<div id="panelResults"> ... </div>

<div id="panelPleaseWait">Please wait ...</div>

Here’s the markup generated for the previous code:

<form action="/Home/GetCustomerDetails"

 method="post"

 onclick="Sys.Mvc.AsyncForm.handleClick(this, new Sys.UI.DomEvent(event));"

 Chapter 9 AJAX Capabilities 431

 onsubmit="Sys.Mvc.AsyncForm.handleSubmit(this, new Sys.UI.DomEvent(event), {

 insertionMode: Sys.Mvc.InsertionMode.replace,

 loadingElementId: 'lblWait',

 updateTargetId: 'pnlDetails' });">

 <input type="text" id="Name" ... />

 <input type="text" id="Date" ... />

 <input type="submit" value="Save" />

</form>

A JavaScript function—handleSubmit—hooks up the form submission and, as its first step,
prevents the default event handler from triggering. In this way, the classic browser-led form
submission process is stopped and replaced with a custom one that works asynchronously.
The same handleSubmit function then proceeds with a classic AJAX request that mimics the
typical behavior of a form submission.

Adjusting the URL on the Fly
There might be situations in which you need to adjust the URL on the fly to reflect the data
being entered or selected by the user. The OnBegin member of the AjaxOptions object serves
this purpose:

<%= Ajax.ActionLink("Details", "/GetCustomerDetails", new { id = "12345" },

 new AjaxOptions { HttpMethod="GET",

 LoadingElementId="lblWait",

 UpdateTargetId="pnlDetails",

 OnBegin="adjustURL" })%>

Here’s a piece of code that adjusts the URL of a hyperlink to reflect the customer currently
selected in a list box:

function adjustURL(context)

{

 // Get the selected item

 var listBox = document.getElementById("listOfCustomers");

 var id = listBox.options[listBox.selectedIndex].value;

 // Get the current request object

 var request = context.get_request();

 // Get the target URL

 var url = request.get_url();

 // Modify as appropriate. (Assuming the URL

 // has a 12345 placeholder to replace.)

 url = url.replace(/12345/, id);

 request.set_url(url);

}

Attached to the OnBegin event, the code retrieves the request object, gets the target URL,
and modifies the URL as appropriate.

432 Part III Programming Features

Reflecting on Partial Rendering in ASP.NET MVC
At first sight, the ASP.NET MVC ability to update portions of the view asynchronously looks
similar to the classic partial rendering you know from Web Forms. However, some relevant
differences exist.

In Web Forms, partial rendering executes as a regular postback, except that it occurs
 asynchronously. In the mechanics of Web Forms, a postback is a one-at-a-time operation
and two postbacks are not allowed to run concurrently. The reason for this is the dependency
of the postback event on the page’s view state.

If two postbacks run asynchronously and simultaneously, two copies of the view state are
being sent to the server. Hence, two differently updated copies of the view state will be sent
back at different times. Neither of them, though, is representative of the state resulting from
the two distinct operations.

In ASP.NET MVC, you have no view state, at least if you avoid using server controls in the
view. This fact removes a key impediment to having asynchronous operations that can be run
concurrently and safely. AJAX helpers in ASP.NET MVC delivers a feature that is reminiscent
of Web Forms partial rendering, but it doesn’t have all the restrictions you encounter in
 classic ASP.NET.

Summary
AJAX is not simply one or two particular features you can add to a page or a view. Although
you can certainly consider AJAX to be the implementation of a JavaScript-based trick in
a page, it should be clear that AJAX is much more than an asynchronous call.

It is relatively easy to change the paradigm for a single feature in a single page. It might
be quite difficult to extend the paradigm to the whole application. AJAX represents
a complete change of paradigm for Web development, and in this regard the world of AJAX
 programming has not been wrapped into one nice, neat, easy-to-use package. Or at least
not yet.

I expect to see in a few years a unified Web platform where at least some basic AJAX
 capabilities are offered out of the box. In this ideal world, you build your page or view and all
of the requests it fires are processed asynchronously. This could be achieved through a new
generation of client browsers or perhaps via a new software platform.

Looking at the current landscape, however, the emerging fact is that each framework
has its own set of facilities for AJAX. In ASP.NET MVC, the total control over HTML you
can gain makes it easy to choose any AJAX strategy. You can go with jQuery and craft

 Chapter 9 AJAX Capabilities 433

your asynchronous requests, or you can go with the Microsoft AJAX library and the new
 data-binding features in ASP.NET AJAX 4. Alternately, you can pick up any other JavaScript
library out there and resort to the old, faithful ASP.NET partial-rendering scheme.

Is there anything really tailor-made for ASP.NET MVC developers? You bet.

You have a few ad hoc AJAX helpers to output asynchronous action links and forms. In the
end, you still keep writing your controller methods and you can invoke them from links
and forms that work asynchronously. The refresh of the view is commanded from within
JavaScript callbacks, but some facilities exist to make it look similar to partial rendering
overall. But the partial rendering you get in ASP.NET MVC is not dependent on the postback
model; it is lightweight and supports concurrent calls. In a way, it is a truly AJAX strategy for
updating views partially.

 435

Chapter 10

Testability and Unit Testing
In preparing for battle I have always found that plans are useless, but planning is
indispensable.

—Dwight D. Eisenhower

I confess I never paid much attention to unit testing until 2004. I was sitting in the audience
of an ASP.NET conference session and I heard “unit testing” mentioned in the Q&A period.
I think it was a comment regarding the provider model being introduced in ASP.NET 2.0
and the concept of separation of concerns (SoC) it was pushing. The comment was something
like “Yes, that’s really great for unit testing.” All of a sudden, I found myself wondering how
it was that I, as well as thousands of other developers in the community, had overlooked
and even neglected unit testing for years.

It turns out that the ISO/IEC 9126 paper—an international standard document issued back
in 1991—lists testability as one of the key quality characteristics for any software architecture.
The necessity of testing software, therefore, is an old one and can be traced back to the very
early days of software engineering.

The question I asked myself on that day in 2004 went unanswered for a couple more years.
Since its beginning, the .NET platform made a point of taking us toward the rapid application
development (RAD) paradigm and, maybe inadvertently, we ended up sacrificing to RAD
some core concepts of good software design. The message of RAD was often perceived as
“You don’t need principles and good design practices to be productive.” Productivity means
doing your job more quickly and using tools that, to the extent that it is possible, do it
for you.

The success of .NET as a platform resulted in many companies over the full spectrum of the
industry needing to acquire new line-of-business applications. In doing so, they dumped
an incredible amount of complexity and business rules on the various development teams.
High productivity remained a primary objective, but being really productive became harder
and harder with the sole support of the RAD paradigm.

It was ultimately a complete change of priorities: In addition to having to be concerned
with time to market, we had to pay much more attention to maintainability and extensibility.
And maintainability brought with it the need to write readable code that could deal with
a growing requirement churn.

What’s the role of testing in this context? The ability to test software, and in particular to
test software automatically, is an aspect of extraordinary importance because automated
tests give you a mechanical way to figure out quickly and reliably whether certain features

436 Part III Programming Features

that worked at some point still work after you make some required changes. In addition,
tests allow you to calculate metrics and take the pulse of a project as well. In the end, the big
change that has come about is that we can no longer spend money on software projects that
do not complete successfully. Testing is an important part of the change.

We’ve all learned a hard lesson lately. Productivity is still important, but focusing on
 productivity alone costs us too much because it can lead to low-quality code that is difficult
and expensive to maintain. And if it’s hard to maintain, where’s the benefit?

The necessity of testing software in an automated way—we could call it the necessity of
 applying the RAD paradigm to tests—raised another key point: the need to have software
that is easy to test. In fact, the ISO/IEC 9126 paper since 1991 has recognized testability
as one of the fundamental qualities of software.

In this chapter, I’ll first try to nail down the technical characteristics that a piece of software
needs to have to be testable. Next, I’ll briefly introduce the basics of unit testing—fixtures,
assertions, test doubles, and code coverage—and finish up with some ASP.NET MVC–specific
examples of unit tests.

Testability and Design
In the context of software architecture, a broadly accepted definition for testability presents
it as “the ease of performing testing.” Testing, of course, is the process of checking software
to ensure that it behaves as expected, contains no errors, and satisfies its requirements.

Testing software is conceptually simple: just force the program to work on correct, incorrect,
missing, or incomplete data and see whether the results you get are in line with any set
 expectations. How would you force the program to work on your input data? How would
you measure the correctness of results? In cases of failure, how would you track the specific
 module that failed?

These questions are the foundation of a paradigm known as Design for Testability (DfT).
Any software built in full respect of DfT principles is inherently testable and, as a very
 pleasant side effect, it is also easy to read, understand and, subsequently, maintain.

Design for Testability
Design for Testability was developed as a general concept a few decades ago in a field that
was not software. The goal of DfT, in fact, was to improve the process of building low-level
circuits within boards and chips.

DfT pioneers employed a number of design techniques and practices with the purpose of
enabling effective testing in an automated way. What pioneers called “automated testing
equipment” was nothing more than a collection of ad hoc software programs written to test
some well-known functions of a board and report results for diagnostic purposes.

 Chapter 10 Testability and Unit Testing 437

DfT was adapted to software engineering and applied to test units of code through
 tailor-made programs. Ultimately, writing unit tests is like writing software. When you write
regular code, you call classes and functions, but you focus more on the overall behavior
of the program and the actual implementation of use-cases. When you write unit tests,
on the other hand, you need to focus on the input and output of individual methods
and classes—a different level of granularity.

DfT defines three attributes that any unit of software must have in order to be easily
 testable: control, visibility, and simplicity. You will be surprised to see that these
 attributes address exactly the questions I outlined earlier when discussing the foundation
of DfT.

The Attribute of Control
The attribute of control refers to the degree to which the code allows testers to apply fixed
input data to the software under test. Any piece of software should be written in a way that
makes it clear what parameters are required and what return values are generated. More,
any piece of software should abstract its dependencies—both parameters and low-level
 modules—and provide a way for external callers to inject them at will.

The canonical example of the control attribute applied to software is a method that requires
a parameter instead of using its knowledge of the system to figure out the parameter’s value
from another publicly accessible component. In DfT, control is all about defining a virtual
contract for a software component that includes preconditions. The easier you can configure
preconditions, the easier you can write effective tests.

The Attribute of Visibility
The attribute of visibility is defined as the ability to observe the current state of the software
under test and any output it can produce. Once you’ve implemented the ability to impose
ad hoc input values on a method, the next step is being able to verify whether the method
behaved as expected. Visibility is all about this aspect—postconditions to be verified past
the execution of a method.

The sense of visibility is that if testers have a way to programmatically observe a given
 behavior, they can easily test it against expected or incorrect values. Postconditions are a way
to formalize the expected behavior of a software module.

The Attribute of Simplicity
Simplicity is always a positive attribute for any system and in every context. Testing is clearly
no exception. Simple and extremely cohesive components are preferable because the less
you have to test, the more reliably and quickly you can do that.

438 Part III Programming Features

In the end, design for testability is a driving factor when writing the source code— preferably
right from the beginning of the project—so that attributes such as visibility, control,
and simplicity are maximized. When design for testability accomplishes this, writing unit tests
is highly effective and overall easier. DfT also offers some pleasant side benefits. Overall,
a better design, which primarily maximizes maintainability, also helps with code regression
and leads to producing code that is easier to read.

Note Many would agree that maintainability is the aspect of software to focus upon because
of the long-term benefits it can deliver. However, readability is strictly related to and, to a good
extent, also part of any maintainability effort. Readability is concerned with writing code that
is easy to read and, subsequently, easy to understand and safer to update and evolve. Readability
passes through company-wide naming and coding conventions and, better yet, implements ways
to effectively convey these conventions to the development teams. In this regard, custom policies
in Microsoft Visual Studio Team Foundation Server are a great help.

Loosen Up Your Design
Testable software is inherently better software from a design perspective. When you apply
control, visibility, and simplicity to the software development process, you end up with
 relatively small building blocks that interact only via contracted interfaces. Testable software
is software written for someone else to use it programmatically. The typical programmatic
user of testable software is the test harness—the program used to run unit tests. In any
case, we are talking about software that uses other software. Low coupling, therefore, is the
 universal principle to apply systematically, and interface-based programming is the best
practice to follow for software that’s easier to test.

Interface-Based Programming
Tight coupling makes software development much simpler and faster. Tight coupling results
from an obvious point: if you need to use a component, just get an instance of it. This leads
to code like that in the following listing:

public class MyComponent

{

 private MyDefaultLogger _logger;

 public MyComponent()

 {

 _logger = new MyDefaultLogger();

 }

 public bool PerformTask()

 {

 // Some work here

 bool success = true;

.
 .
 .

 Chapter 10 Testability and Unit Testing 439

 // Log activity

 _logger.Log(...);

 // Return success or failure

 return success;

 }

}

The MyComponent class is strictly dependent on MyDefaultLogger. You can’t reuse the
MyComponent class in an environment where MyDefaultLogger isn’t available. Moreover, you
can’t reuse MyComponent in a runtime environment that prevents MyDefaultLogger from
working properly. This is an example of where tight coupling between classes can take you.
From a testing perspective, the MyComponent class can’t be tested without reproducing
a runtime environment that is perfectly compatible with the production environment.
For example, if MyDefaultLogger logs to Microsoft Internet Information Services (IIS), your
test environment must have IIS properly configured and working.

The beauty of unit testing, on the other hand, is that you run your tests quickly and
 punctually, focusing on the behavior of a small piece of software and ignoring or controlling
dependencies. This is clearly impossible when you program your classes to use a concrete
implementation of a dependency. Here’s how to rewrite the MyComponent class so that it
depends on an interface, thus resulting in more maintainable and testable code:

public class MyComponent

{

 private ILogger _logger;

 public MyComponent()

 {

 _logger = new MyDefaultLogger();

 }

 public MyComponent(ILogger logger)

 {

 _logger = logger;

 }

 public bool PerformTask()

 {

 // Some work here

 bool success = true;

.
 .
 .

 // Log activity

 _logger.Log(...);

 // Return success or failure

 return success;

 }

}

The class MyComponent is now dependent on the ILogger interface that abstracts the
 dependency on the logging module. The MyComponent class now knows how to deal with
any objects that implement the ILogger interface, including any objects you might inject
programmatically.

440 Part III Programming Features

The solution just shown is acceptable from a testing perspective, even though it is far from
perfect. In the preceding implementation, the class is still dependent on MyDefaultLogger
and you can’t really reuse it without having available the assembly where MyDefaultLogger
is defined. At a minimum, however, it allows you to test the behavior of the class in isolation,
bypassing the default logger, as shown here:

// Arrange the call

var fakeLogger = new FakeLogger();

var component = new MyComponent(fakeLogger);

// Perform the call and check against expectations

Assert(component.PerformTask());

Instructing your classes to work against interfaces rather than implementations is one of
five pillars of modern software development. The five principles of development are often
 summarized with the acronym SOLID, formed from the initials of the five principles:

n Single Responsibility Principle

n Open/Closed Principle

n Liskov’s Substitution Principle

n Interface Segregation Principle

n Dependency Inversion Principle

For more information on these principles, check out my book Microsoft .NET: Architecting
Applications for the Enterprise (Microsoft Press, 2008).

Dependency Injection
In modern software, the idea of writing code against interfaces rather than implementations
is widely accepted and applied, but it is also often shadowed by another, more specific,
 concept—dependency injection.

We could say that the whole concept of interface-based programming is hard-coded in the
Dependency Inversion Principle and that dependency injection is a popular design pattern
used to apply the principle. As Robert Martin formulated it, the Dependency Inversion
Principle reads like this:

High-level modules should not depend upon low-level modules. Both should depend upon
abstractions.

Each method in a class is expected to perform a number of actions. As you specify these
 actions, you proceed in a top-down way, going from high-level abstractions down the
stack to more and more precise and specific functionalities. In a top-down approach, you
are interested in recognizing these functionalities, but you don’t need to specify details for
these components in the first place. All that you need to do is hide details behind a stable
 interface. Next, you program your methods against the interface.

 Chapter 10 Testability and Unit Testing 441

That’s what the Dependency Inversion Principle says. What about the practice, instead?
Because an interface simply represents a contract, you need to provide a concrete object
that adheres to that contract. To apply the Dependency Inversion Principle, you need
a factory that returns a valid implementation of the dependency.

There are two main patterns that help in this regard: Service Locator and Dependency
Injection. Both were covered in Chapter 8, “The ASP.NET MVC Infrastructure.”

There are several possible implementations of the Service Locator pattern, but the main fact
remains that, with it, the factory is embedded in the method that uses the interface. To figure
out dependencies, you have to snoop into the source code of the method. Another downside
of the Service Locator pattern is that you cannot change its behavior on the fly to switch
from a runtime scenario to a testing scenario. You can get that if you code the locator to
read about type mappings from an external configuration file or a database. This approach
 significantly raises the testing-friendliness of the pattern.

A much more helpful pattern from a testing viewpoint is Dependency Injection. In this
case, the factory is moved out of the class that uses the dependencies. In some way,
 external dependencies are to be injected dynamically. This has two benefits. First, by simply
 looking at the signature of a method you can spot all of its dependencies, which greatly
helps readability. Second, you can explicitly instantiate a fake dependency and pass it on
 programmatically, which is ideal for effective testing.

Dependency Injection, whether coded manually as shown here or implemented through
productivity tools such as IoC containers (which are discussed in Chapter 8), is a much more
useful pattern when testability is a primary concern.

Relativity of Software Testability
Is design for testability important because it leads to software that is easy to test? Or rather, is
it so important because it leads to inherently better designed software? I definitely favor the
second option (even though a strong argument can be made for the first option too).

You probably won’t go to a customer and use the argument of testability to sell a product of
yours. You would likely use other arguments such as features, overall quality, user- friendliness,
and ease of use. Testability is important only to developers, because it is an excellent
 barometer of the quality of design and coding. From the user’s perspective there’s no
 difference between “testable code that works” and “untestable code that works.”

On the other hand, a piece of software that is easy to test is necessarily loosely coupled,
 provides a great separation of concerns between core parts, and is easy to maintain because
it can have a battery of tests to promptly catch any regression. In addition, it is inherently
simpler in its structure and lends itself well to future extensions.

In the end, pursuing testability is a great excuse to have well-designed software. And once
you get it, you can also easily test it!

442 Part III Programming Features

Testability and Coupling
There’s a strict relationship between coupling and testability. A class that can’t be easily
 instantiated in a test has some serious coupling problems. This doesn’t mean you can’t test it
automatically, but you will probably have to configure some database or external connection
also in a test environment, which will definitely produce slower tests and higher maintenance
costs.

To be effective, a test has to be quick and execute in memory. A project that has good test
coverage will likely have a few simple tests per class, which likely amount to a few thousand
test calls. It is a manageable problem if each test is quick enough and has no latency due to
synchronization and connections. It is a serious issue otherwise.

If the problem of coupling between components is not properly addressed in the design,
you end up testing components that interact with others, producing something that looks
more like an integration test than a unit test. Integration tests are still necessary, but they
ideally should run on individual units of code (for example, classes) that already have been
 thoroughly tested in isolation. Integration tests are not run as often as unit tests because
of their slow speed and higher setup costs.

In addition, if you end up using integration tests to test a class and a failure occurs, how
 easily can you identify the problem? Was it in the class you intended to test, or was it due to
a problem in some of the dependencies? Finding the right problem gets significantly more
expensive. And even when you’ve found it, fixing it can have an impact on components
in the upper layers.

By keeping coupling under control at the design level (for example, by systematically
 applying the SOLID principles and Dependency Injection in particular), you enforce
 testability. On the other hand, by pursuing testability you keep coupling under control
and get a better design for your software.

Testability and Object Orientation
A largely debated point is whether or not it is acceptable (and if it is, to what degree)
to sacrifice some design principles (specifically, object-oriented principles) to testability.
As mentioned, testability is a driver for better design, but you can have a great design
 without unit tests and also have great software that is almost impossible to test automatically.

The point here is slightly different. If you pursue good object-oriented design, you probably
have a policy that limits the use of virtual members and inheritable classes to situations
where it is only strictly necessary. Nonvirtual methods and sealed classes, however, can be
hard to test because most test environments need to mock up classes and override members.
Furthermore, why should you have an additional constructor that you won’t use other than
for testing? What should you do?

It is clearly mostly a matter of considering the trade-offs.

 Chapter 10 Testability and Unit Testing 443

However, consider that commercial tools exist that let you mock and test classes regardless
of their design, including sealed classes and nonvirtual methods. An excellent example is
TypeMock. (See http://site.typemock.com.)

In .NET, the mechanism of partial classes offers a great solution for adding to an existing class
some extra members provided solely for the purpose of unit testing. Using partial classes
gives you the chance to have highly testable classes without spoiling the overall design with
test-specific additions.

Basics of unit Testing
Unit testing verifies that individual units of code are working properly according to their
expected behavior. A unit is the smallest part of an application that is testable—typically,
a method on a class.

Unit testing consists of writing and running a small program (referred to as a test harness)
that instantiates classes and invokes methods in an automatic way. In the end, running
a battery of tests is much like compiling. You click a button in the programming environment
of choice (for example, Visual Studio), you run the test harness and, at the end of it, you know
what went wrong, if anything. (See Figure 10-1.)

FIGuRE 10-1 The results of a running a test project in Visual Studio

Working with a Test Harness
In its simplest form, a test harness is a manually written program that reads test-case input
values and the corresponding expected results from some external files. Then the test
 harness calls methods using input values and compares the results with the expected values.
Needless to say, writing such a test harness entirely from scratch is, at a minimum, time
 consuming and error prone. More importantly, it is restrictive in terms of taking advantage of
the testing capabilities.

444 Part III Programming Features

The most effective and common way to conduct unit testing entails using an automated
test framework. An automated test framework is a developer tool that normally includes
a runtime engine and a framework of classes for simplifying the creation of test programs.

MSTest and NUnit
Two of the most popular tools are MSTest and NUnit. MSTest is the testing tool incorporated
into all versions of Visual Studio 2010. It is also available with some earlier versions, starting
with Visual Studio 2005 Team Tester and Team Developer. Figure 10-1 shows the user
 interface of MSTest within Visual Studio.

NUnit (which you can find at http://www.nunit.org) is an open-source product that has
been around for quite a few years. NUnit is created to be a stand-alone tool and doesn’t
natively integrate with Visual Studio, which can be either good or bad news—it depends
on your perspective of things and your needs and expectations. However, a few tricks exist
that enable you to use NUnit from inside Visual Studio. You can configure it as an external
 executable or, better yet, you can get a plug-in such as ReSharper or TestDriven.NET.

At the end of the day, picking a testing framework is really a matter of preference. Regardless
of which one you choose, you are hardly objectively losing anything really important.
The testing matters much more than the framework you use. In my opinion, as of Visual
Studio 2010 no significant technical differences exist between MSTest and NUnit. This doesn’t
mean you can’t make an argument for preferring one over the other, but the argument
would likely be more about personal preference than the capabilities of the tools themselves.
Both are very good.

I’ll use MSTest in this book.

Text Fixtures
You start by grouping related tests in a text fixture. Text fixtures are just test-specific classes
where methods typically represent tests to run. In a text fixture, you might also have code that
executes at the start and end of the test run. Here’s the skeleton of a text fixture with MSTest:

using Microsoft.VisualStudio.TestTools.UnitTesting;

.
 .
 .

[TestClass]

public class CustomerTestCase

{

 private Customer customer;

 [TestInitialize]

 public void SetUp()

 {

 customer = new Customer();

 }

 Chapter 10 Testability and Unit Testing 445

 [TestCleanup]

 public void TearDown()

 {

 customer = null;

 }

 // Your tests go here

 [TestMethod]

 public void ShouldComplainInCaseOfInvalidId()

 {

.
 .
 .

 }

.
 .
 .

}

Text fixtures are grouped in an ad hoc Visual Studio project. When you create a new ASP.NET
MVC project, Visual Studio offers to create a test project for you.

You transform a plain .NET class into a test fixture by simply adding the TestClass attribute.
You turn a method of this class into a test method by using the TestMethod attribute instead.
Attributes such as TestInitialize and TestCleanup have special meanings and indicate code
that runs before and after, respectively, each test in that class. By using attributes such
as ClassInitialize and ClassCleanup, you can define, instead, code that runs only once before
and after all tests you have in a class.

Arrange, Act, Assert
The typical layout of a test method is summarized by the triple “A” acronym: arrange, act,
 assert. You start arranging the execution context in which you will test the class by initializing
the state of the class and providing any necessary dependencies.

Next, you put in the code that acts on the class under test and performs any required work.
Finally, you deal with results and verify that the received output is correct. You do this by
verifying assertions based on your expectations.

You write your assertions using the ad hoc assertion API provided by the test harness. At a
 minimum, the test framework will let you check whether the result equals an expected value:

[TestMethod]

public void AssignPropertyId()

{

 // Define the input data for the test

 Customer customer = new Customer();

 string id = "IDS";

 string expected = id;

 // Execute the action to test.

 customer.ID = id;

446 Part III Programming Features

 // Test the results

 Assert.AreEqual(expected, customer.ID);

}

A test doesn’t necessarily have to check whether results are correct. A valid test is also
the test aimed at verifying whether under certain conditions a method throws an exception.
Here’s an example where the setter of the Id property in the Customer class is expected to
raise an ArgumentException if the empty string is assigned:

[TestMethod]

[ExpectedException(typeof(ArgumentException))]

public void AssignPropertyId()

{

 // Define the input data for the test

 Customer customer = new Customer();

 string id = String.Empty";

 string expected = id;

 // Execute the action to test.

 customer.ID = id;

 // Test the results

 Assert.AreEqual(expected, customer.ID);

}

When writing tests, you can decide to temporarily ignore one because you know it doesn’t
work but you have no time to fix it at present. You use the Ignore attribute for this:

[Ignore]

[TestMethod]

public void AssignPropertyId()

{

.
 .
 .

}

Likewise, you can decide to mark the test as temporarily inconclusive because you are
 currently unable to determine under which conditions the test will succeed or fail:

[TestMethod]

public void AssignPropertyId()

{

.
 .
 .

 Assert.Inconclusive("Unable to determine success or failure");

}

You might think that ignoring a test, or marking it as inconclusive, are unnecessary tasks
 because you could more simply comment out tests that for some reason just don’t work.
This is certainly true, but experience teaches that testing is a delicate task that is always on

 Chapter 10 Testability and Unit Testing 447

the borderline between normal and low priority. And it is so easy to forget about a test after
it has been commented out. It’s not by chance that all test frameworks offer a programmatic
way to ignore tests while keeping the code active in the project. Test harness authors know
project schedules and budgets are always tight, but they also know maintaining tests in
an executable state is important. Whenever you run the tests, you’ll be reminded that some
tests were ignored or inconclusive rather than encouraged to forget you commented out one
or several.

Data-Driven Tests
When you arrange a test for a class method, you might sometimes need to try it with a range
of possible values, including correct and incorrect values and values that represent edge
 conditions. In this case, a data-driven test is a great help.

MSTest supports two possible data sources: a Microsoft Office Excel .csv file or any valid ADO.
NET data source. The test must be bound to the data source using the DataSource attribute,
and an instance of the test will be run for each value in the data source. The data source will
contain input values and expected values:

string id = TestContext.DataRow["ID"].ToString();

string expected = TestContext.DataRow["Result"].ToString();

.
 .
 .

Assert.AreEqual(id, expected);

You use the TestContext variable to read input values. In MSTest, the TestContext variable is
automatically defined when you add a new unit test:

private TestContext testContextInstance;

public TestContext TestContext

{

 get { return testContextInstance; }

 set { testContextInstance = value; }

}

Among other things, the DataSource attribute also lets you specify whether test input values
are to be processed randomly or sequentially.

Aspects of Testing
Writing unit tests is still a form of programming and has the same need for good
 practices and techniques as software programming aimed at production code. Writing unit
tests, however, has its own set of patterns and characteristics that you might want to keep
an eye on.

448 Part III Programming Features

Very Limited Scope
When introducing DfT at the beginning of the chapter, I wrote it quite clearly: Simplicity is
a fundamental aspect of software that is key in enabling testability. When applied to unit
testing, simplicity is related to giving a very limited scope to the code under test.

A limited scope makes the test self-explanatory and reveals its purpose clearly. This is
 beneficial for at least two reasons. First, any developers looking into it, including the same
author a few weeks later, can quickly and unambiguously understand what the expected
 behavior of the method under test is.

Second, a test that fails poses the additional problem of you needing to figure out why it
failed in order to fix the class under test. The simpler the test method is, the simpler it will
be to isolate problems within the class being tested. Furthermore, the more layered the class
 under test is, the easier it will be to apply changes without the risk of breaking the code
somewhere else. Finally, writing tests with a very limited scope is significantly easier for
 classes that control their dependencies on other components.

Unit testing is like a circle: making it virtuous or vicious is up to you, and it mostly depends
on the quality of your design.

Testing in Isolation
An aspect of unit tests that is tightly related to having a limited scope is testing in isolation.
When you test a method, you want to focus only on the code within that method. All that
you want to know is whether that code provides the expected results in the tested scenarios.
To get this, you need to get rid of all dependencies the method might have.

If the method, say, invokes another class, you assume that the invoked class will always
return correct results. In this way, you eliminate at the root the risk that the method fails
under test because a failure occurred down the call stack. If you test method A and it fails,
the reason has to be found exclusively in the source code of method A and not in any of its
dependencies.

It is highly recommended that the class being tested be isolated from its dependencies.
Note, though, that this can happen only if the class is designed in a loosely coupled manner.
In an object-oriented scenario, class A depends on class B when any of the following
 conditions are verified:

n Class A derives from class B.

n Class A includes a member of class B.

n One of the methods of class A invokes a method of class B.

 Chapter 10 Testability and Unit Testing 449

n One of the methods of class A receives or returns a parameter of class B.

n Class A depends on a class that, in turn, depends on class B.

How can you neutralize dependencies when testing a method? You use test doubles.

Fakes and Mocks
A test double is an object that you use in lieu of another. A test double is an object that
 pretends to be the real one expected in a given scenario. A class written to consume
an object that implements the ILogger interface can accept a real logger object that logs to
IIS or some database table. At the same time, it also can accept an object that pretends to be
a logger but just does nothing. There are two main types of test doubles: fakes and mocks.

The simplest option is to use fake objects. A fake object is a relatively simple clone of
an object that offers the same interface as the original object, but returns hard-coded or
programmatically determined values. Here’s a sample fake object for the ILogger type:

public class FakeLogger : ILogger

{

 public void Log(string message)

 {

 return;

 }

}

As you can see, the behavior of a fake object is hard-coded; the fake object has no state and
no significant behavior. From the fake object’s perspective, it makes no difference how many
times you invoke a fake method and when in the flow the call occurs. You use fakes when
you just want to ignore a dependency.

A more sophisticated option is using mock objects. A mock object does all that a fake does,
plus something more. In a way, a mock is an object with its own personality that mimics the
behavior and interface of another object. What more does a mock provide to testers?

Essentially, a mock allows for verification of the context of the method call. With a mock, you
can verify that a method call happens with the right preconditions and in the correct order
with respect to other methods in the class.

Writing a fake manually is not usually a big issue—all the logic you need is for the most part
simple and doesn’t need to change frequently. When you use fakes, you’re mostly interested
in the state that a fake object might represent; you are not interested in interacting with it.

You use a mock instead when you need to interact with dependent objects during tests.
For example, you might want to know whether the mock has been invoked or not, and you
might decide within the test what the mock object has to return for a given method.

450 Part III Programming Features

Writing mocks manually is certainly a possibility, but it is rarely an option you want to
 consider. For the level of flexibility you expect from a mock, you need an ad hoc mocking
framework. Table 10-1 lists a few popular mocking frameworks.

TABLE 10-1 Some popular mocking frameworks

Product URL

Moq http://code.google.com/p/moq

NMock2 http://sourceforge.net/projects/nmock2

TypeMock http://www.typemock.com

Rhino Mocks http://www.ayende.com/projects/rhino-mocks.aspx

Note that no mocking framework is currently incorporated in Visual Studio 2010 and earlier
versions.

With the notable exception of TypeMock, all frameworks in the table are open-source
 software. TypeMock is a commercial product with unique capabilities that basically don’t
require you to (re)design your code for testability. TypeMock enables testing code that
was previously considered untestable, such as static methods, nonvirtual methods, and
sealed classes. Here’s a quick example of how to use a mocking framework such as Rhino
Mocks:

[TestMethod]

public void Test_If_Method_Works()

{

 // Arrange

 var logger = MockRepository.GenerateMock<ILogger>();

 logger.Expect(l => l.Log(Arg<String>.Is.Anything));

 var controller = new HomeController(logger);

 // Act

.
 .
 .

 // Assert

.
 .
 .

}

The class under test—the HomeController class—has a dependency on an object that
 implements the ILogger interface:

public interface ILogger

{

 void Log(string msg);

}

The mock repository supplies a dynamically created object that mocks up the interface for
what the test is going to use. The mock object implements the method Log in such a way
that it does nothing for whatever string argument it receives. You are not really testing the
logger here; you are focusing on the controller class and providing a quick and functional
mock for the logger component the controller uses internally.

 Chapter 10 Testability and Unit Testing 451

There’s no need for you to create an entire fake class; you just specify the code you need
a given method to run when invoked. That’s the power of mocks compared to fakes.

Assertions per Test
This is a controversial point. How many assertions should you have per test? Should you force
yourself to have just one assertion per test in full homage to the principle of narrowly scoped
tests?

Many people in the industry seem to think so. Arguments used in support of this opinion
are good ones, indeed. One assertion per test leads you to write more focused tests and
keep your scope limited. One assertion per test makes it obvious what each test is testing.

The need for multiple assertions often hides the fact that you are testing many features
 within a single test. And this is clearly a thing to avoid. Counting the number of assertions
is not necessarily the rule to follow in any case; even though if you need just one rule, one
 assertion per test is probably the best compromise you can make.

If you’re testing the state of an object after a given operation, you probably need to check
multiple values and need multiple assertions. Now, you can certainly find a way to express
this through a bunch of tests, each with a single assertion. In my opinion, though, that would
be a lot of refactoring for little gain.

I don’t mind having multiple assertions per test as long as the code in the test is testing
just one very specific behavior. Most frameworks stop at the first failed assertion, so you
 theoretically risk that other assertions in the same test will fail on the next run. If you hold
to the principle that you test just one behavior and use multiple assertions to verify multiple
aspects of the class related to that behavior, all assertions are related and if the first one fails,
the chances are great that by fixing it you won’t get more failures in that test.

Testing Inner Members
In some situations, a protected method or property needs to be accessed within a test.
In general, a class member doesn’t have to be public to deserve some tests. However,
 testing a nonpublic member raises some additional issues.

A common approach to testing a nonpublic member consists of creating a new class that
 extends the class under test. The derived class then adds a public method that calls the
 protected method. This class is added only to the test project, without spoiling the class design.

As mentioned earlier, in the .NET Framework an even better approach consists of adding
a partial class to the class under test. For this to happen, though, the original class needs to
be marked as partial itself. However, this is not a big deal design-wise.

In .NET, you can also easily make internal members of a class visible to another assembly
(for example, the test assembly) by using the InternalsVisibleTo attribute:

[assembly: InternalsVisibleTo("MyTests")]

452 Part III Programming Features

You can add the preceding line to the assemblyinfo.cs file of the project that contains the
class with internal members to make available. Note that you can use the attribute multiple
times so that you make visible internal members of classes to multiple external executables.

As I see things, using this attribute is a little more obtrusive than using partial classes. To take
advantage of the attribute, in fact, you must mark as internal any members that you want
to recall from tests. Internal members are still not publicly available, but the level of visibility
they have is higher than private or protected. In other words, you should use internal
and InternalsToVisible sparingly and only where a specific need justifies its use.

Finally, MSTest also offers a nice programming feature that offers to call nonpublic members
via reflection—the PrivateObject class:

var resourceId = "WelcomeMessage";

var resourceFile = "MyRes.it.resx";

var expected = "...";

var po = new PrivateObject(controller);

var text = po.Invoke("GetLocalizedText", new object[] { resourceId, resourceFile });

Assert.AreEqual(text, expected);

You wrap the object that contains the hidden member in a new instance of the PrivateObject
class. Next, you call the Invoke method to indirectly invoke the method with an array of
 objects as its parameter list. The method Invoke returns an object that represents the return
value of the private member.

Code Coverage
The primary purpose of unit and integration tests is to make the development team
 confident about the quality of the software. Basically, unit testing tells the team whether
they are doing well and are on the right track. How reliable are the results of unit tests?

Any measure of reliability you want to consider certainly depends on the number of unit tests
and the related code coverage. On the other hand, no realistic correlation exists between
code coverage and the quality of the software.

Typically, unit tests cover only a subset of the code base, but no common agreement has
ever been reached on what is a “good” percentage of code coverage. Some say 80 percent
is good; some do not even instruct the testing tool to calculate it. For sure, forms of full code
 coverage are actually impractical or impossible. Visual Studio 2008 Team System and all
 versions of Visual Studio 2010 have code-coverage tools. (See Figure 10-2.)

There are a number of code coverage criteria, such as function, statement, decision, and path
coverage. Function coverage measures whether each function in the program has been
 executed in some tests. Statement coverage looks more granularly at individual lines of the
source code. Decision coverage measures the branches (such as an if statement) evaluated,
whereas path coverage checks whether every possible route through a given part of the code
has been executed.

 Chapter 10 Testability and Unit Testing 453

FIGuRE 10-2 Code coverage tools in Visual Studio 2010

Each criterion provides a viewpoint into the code, but what you get back are only numbers to
be interpreted. So it might seem that testing all the lines of code (that is, getting 100 percent
statement coverage) is a great thing; however, a higher value for path coverage is probably
more desirable. Code coverage is certainly useful because it helps you identify which code
hasn’t been touched by tests. However, code coverage doesn’t tell you much about how well
tests have exercised the code. Want a nice example?

Imagine a method that processes an integer. You can have 100 percent statement coverage
for it, but if you lack a test in which the method gets an out-of-range, invalid value you might
get an exception at run time in spite of all the successful tests you have run.

In the end, code coverage is a number subject to specific measurement. Focusing on
 behavior is the best way to approach testing.

Important Testability is often presented as an inalienable feature that makes ASP.NET MVC the
first option to consider when it comes to Web development for the Microsoft platform. For sure,
ASP.NET MVC helps developers write more solid and well-designed software with due separation
of concerns between view and behavior. The ASP.NET MVC runtime also offers an API that
 abstracts away any dependencies your code can have on ASP.NET intrinsic objects. This change
marks a huge difference from Web Forms as far as testing is concerned. This fact increases the
feeling that ASP.NET MVC encourages test-driven development.

Is ease of testing a good reason to push the use of ASP.NET MVC over Web Forms? Does
this alone translate to concrete and tangible benefits for the customer? As you saw in
Chapter 1, “Goals of ASP.NET and Motivations for Its Development,” ASP.NET MVC clearly has
an architecture that is superior to Web Forms. But, again, is this a sufficient reason for saying
that you should go with ASP.NET MVC all the time and forget about Web Forms? My answer is
no. As I see things, the architecture of the tool you use to write an application is not necessarily
a valid metric to measure the quality of the final product.

454 Part III Programming Features

In the end, testability is a fundamental aspect of software, as the ISO/IEC 9126 paper recognized
back in 1991. With ASP.NET MVC, designing your code for testability is easier and encouraged.
(It is not guaranteed, however.) But you also can write testable code in ASP.NET Web Forms and
test it to a good extent. Testability is an excellent excuse to pursue good design. And design
makes a difference under the hood.

unit Testing in ASP.NET MVC
Any environment that provides a good separation of concerns between its parts is
 inherently more testable. ASP.NET Web Forms was not designed with the principle of
 interface-based programming in mind. At the same time, though, if you code it properly
you can add a great deal of SoC and make some significant portion of your code inherently
testable.

By implementing the Model-View-Presenter (MVP) pattern (which was discussed in
Chapter 1 and Chapter 3, “The MVC Pattern and Beyond”), you can add a presenter class to
Web Forms and keep it separate from the view represented by the system’s Page class. In this
way, you can test the presenter class in isolation much like you can with a controller class in
ASP.NET MVC.

Testing-wise, the aspect most characteristic of ASP.NET MVC is the set of abstractions it
provides over the ASP.NET intrinsic objects that populate the HTTP context of a request:
Response, Request, User, and the like. In the ASP.NET runtime that both Web Forms and
ASP.NET MVC share, these objects are treated as concrete objects and are not manipulated
via an interface. In the ASP.NET MVC runtime shell, you find the new HttpContextBase class,
which provides an abstraction layer over the physical implementation of objects. This little
detail makes a huge difference because it enables you to take advantage of a number of new
testing scenarios.

Testing Controller Actions
You need an ad hoc test project to start writing your unit tests. Whenever you create a new
ASP.NET MVC project, Visual Studio offers to create a sample test project. Figure 10-3 shows
a realistic configuration of a test project in Visual Studio.

A test project is just a project, and its ultimate purpose is executing code correctly.
Building a test project is like building an application with no user interface of its own.
Your purpose is to write code that places calls to existing classes and methods. The test
 project can be shaped up to reference ad hoc assemblies, test-specific classes, or its own
configuration file, and tricks of any sort are allowed and welcome just as in any other type
of project.

 Chapter 10 Testability and Unit Testing 455

FIGuRE 10-3 A sample ASP.NET MVC test project

Testing Controller Actions
The most common and effective type of test you want to perform is on a controller’s
 action methods. The controller class is loosely coupled to the rest of the application. It gets
called by the invoker, receives context information through the abstract interface of the
HttpContextBase class, does its job, and passes an in-memory object down to the rendering
engine.

Testing a controller action couldn’t be smoother. (Also, note that this is the same level of
 testability you can achieve in Web Forms by implementing the MVP pattern.)

[TestClass]

public class HomeControllerTest

{

 [TestMethod]

 public void Try_Invoking_Action_Index()

 {

 // Arrange

 var controller = new HomeController();

 // Act

 var result = controller.Index() as ViewResult;

 // Assert

 var viewData = result.ViewData;

 Assert.AreEqual(Locales.HomeController.WelcomeMessage, viewData["Message"]);

 }

}

The test method first gets a new instance of the controller class and then acts on it by calling
the method under test—the method Index in the preceding code snippet.

456 Part III Programming Features

Because the controller is essentially a class that retains no hidden dependencies on the
 runtime environment, testing one of its methods is as simple as invoking a method on a class.
A controller action method typically returns an ActionResult object, and that is the class you
have to deal with to verify the correctness of the response.

As you saw in Chapter 4, “Inside Controllers,” ActionResult is only the base type and
a controller method will likely return a more specific type, such as JsonResult or ViewResult.
You can use any information you hold in this regard to cast the response and check its
content.

Let’s assume the Index method has the following code:

public virtual ActionResult Index()

{

 ViewData["Message"] = Locales.HomeController.WelcomeMessage;

 return View();

}

The method returns an object that references an HTML view. More important than this, the
view is based on the data stored in the ViewData dictionary (or in the model object if the
view is strongly typed).

In ASP.NET MVC, the view is mostly passive and is limited to hosting in specific placeholders
the data it receives from the controller through ViewData, ViewData.Model, or both. You
don’t need to automatically test the HTML for the view; it is sufficient that you ensure that
correct data is being passed to the view.

Subsequently, in the Assert section of the test you check whether the expected value is found
in the ViewData dictionary.

Note In Web Forms, you can achieve nearly the same result by implementing the MVP pattern
manually or perhaps by using some of the facilities in the Web Client Software Factory. This
 applies to the way in which you call the controller and also to the approach you take to check
the response of a controller action.

Passing Parameters to a Controller Action
The model-binding mechanism we reviewed in Chapter 6, “Inside Models,” greatly simplifies
the scenario in which you want to test a controller method that requires input parameters.
A model binder makes it possible to define a controller method with its own signature, as
shown here:

// From a ProductController class

public virtual ActionResult Index(int productId)

{

.
 .
 .

}

 Chapter 10 Testability and Unit Testing 457

The ID of the product is excerpted from the request, but that code doesn’t belong to the
controller itself. The action invoker and the model binder do the trick, and the controller
 action just gets the value. In testing, this translates to fairly simple code:

var controller = new ProductController();

var result = controller.Index(42) as ViewResult;

var model = result.ViewData.Model as ProductViewModel;

if (model == null)

 Assert.Fail("ViewData.Model is null");

Assert.IsNotNull(model.Product);

Assert.AreEqual(model.Product.ProductID, 42);

As you can see, the test contains multiple assertions. However, all the assertions refer to
just one action—getting the details of the specified product.

Testing Different Views
There might be situations in which the controller decides on the fly about the view to render.
This happens when the view to render is based on some conditions known only at run time.
An example is a controller method that has to switch view templates based on the locale,
user account, day of the week, or anything else your users might ask you. The structure
of the controller action looks like the code shown here:

public virtual ViewResult Index(int productId)

{

 var cultureInfo = Thread.CurrentThread.CurrentUICulture;

 if (cultureInfo == "it-IT")

 return View("Index_it");

 return View();

}

In a test, you can catch the view being rendered using the ViewName property of the
ActionResult object:

[TestMethod]

public void Should_Render_Italian_View()

{

 // Set the it-IT culture

.
 .
 .

 // Act

 var controller = new ProductController();

 var result = controller.Index(42) as ViewResult;

 if (result == null)

 Assert.Fail("Invalid result");

 Assert.AreEqual(result.ViewName, "Index_it", true);

}

By checking the public properties of the specific ActionResult object returned by the
 controller method, you can perform ad hoc checks when a particular response is generated
such as JSON, JavaScript, binaries, files, and so forth.

458 Part III Programming Features

Testing Redirections
A controller action might also redirect to another URL or route. Testing a redirection,
 however, is no harder than testing a context-specific view. A controller method that redirects
will return a RedirectResult object if it redirects to a specific URL; it will instead return
a RedirectToRouteResult object if it redirects to a named route.

The RedirectResult class has a familiar Url property you can check to verify whether the action
completed successfully. The RedirectToRouteResult class has properties such as RouteName
and RouteValues that you can check to ensure the redirection worked correctly.

Injecting Mocks and Fakes
Even in a moderately complex application, you might have the need to pass some
 dependencies to a controller. In Chapter 4, we discussed two possible stereotypes
for a controller. It can be devised to play the role of the controller or the role of the
coordinator.

In spite of the naming conflict, a controller that follows the controller stereotype contains
methods that direct activities and make most of the important decisions regarding
the assigned task. In this case, you probably end up doing the entire job from within
the controller without the need of having external dependencies on services and data
 repositories. However, when you make a point of building a layered solution, a typical
 method in the controller delegates work to other components such as services and
 components for data access. In this case, it’s coordinating the work. Here’s the layout of
a controller designed to operate as a coordinator:

public class CustomerController : Controller

{

 public CustomerController(ICustomerService service, IRegistry registry)

 {

 _service = service;

 _registry = registry;

 }

 private readonly ICustomerService _service;

 private readonly IRegistry _registry;

.
 .
 .

}

The CustomerController class depends on two external components being properly
 abstracted by interfaces. The IRegistry interface identifies a container of global data shared
across the application. For example, the IRegistry object can cache the list of menu items, or

 Chapter 10 Testability and Unit Testing 459

the list of countries to use in a variety of places. The ICustomerService interface identifies the
component that takes care of executing tasks that involve the entity Customer.

In a controller that behaves like a coordinator, what kind of behavior are you going to test?
Certainly not the behavior coded in the registry or in the customer service. Here’s a sample
method:

// From CustomerController class

public virtual ActionResult Index(string country)

{

 // Action

 var customers = _service.LoadCustomersByCountry(country);

 // Rendering

 var model = new CustomerViewModel();

 model.CurrentCountry = country;

 model.Customers = customers;

 model.Countries = _registry.GetCountriesFromCache();

 return View("CustomerByCountry", model);

}

The controller invokes the service to get the list of customers from a given country and
then packages the data for the view. In doing so, the controller also accesses the registry to
grab the list of countries to be placed in the view. With this implementation, the controller
is clearly acting as a coordinator. From a testing viewpoint, you’re not interested in testing
 dependencies. More precisely, you will test dependencies separately; when it comes to
 testing the controller, you need to mock up (or fake) dependencies and just ensure that the
controller does its coordination job well.

Ignoring Dependencies
As far as testing is concerned, we could say that there are two main types of dependencies:
those you want to ignore, and those you want to interact with but in a controlled way. The
rule of thumb is to use fakes when you want to ignore a dependency and use mocks when
you need more interaction. How do you decide?

A fake is a class you write and add to the test project. It makes sense to have a fake if you
don’t need multiple versions of it for multiple tests. If one implementation fits all the needs
you have for it, go for a fake. For a registry, you probably want to use a fake:

public class FakeRegistry : IRegistry

{

 #region IRegistry Members

 public void LoadCountriesIntoCache()

 {

 // No op

 }

460 Part III Programming Features

 public IList<String> GetCountriesFromCache()

 {

 var testData = new List<String>(new string[]

 {

 "Austria",

 "Italy",

 "Germany"

 });

 return testData;

 }

 #endregion

}

In this example, the IRegistry interface has only two members: one for storing data into the
cache, and one for reading. The fake object doesn’t do anything when loading and returns
canned values when a caller attempts to read. This implementation works throughout the
application. Here’s how to use the FakeRegistry class in a test:

[TestClass]

public class CustomersControllerTests

{

 [TestMethod]

 public void Test_If_Service_Returns_Customers_From_Given_Country()

 {

 // Arrange

 var service = ...;

 var controller = new CustomerController(service, new FakeRegistry());

 // Act

 var result = controller.Index("Italy");

 // Assert that member Countries in the model is filled as expected

 Assert.IsTrue(model.Countries.Contains("Italy"));

 }

}

The assertion verifies that the specified country (Italy, in the example) is one of the
 countries known to the registry—namely, one of the countries that can be selected
from the user interface. Figure 10-4 provides a glimpse of the user interface for such
a scenario.

The user interface lists customers and orders, but the drop-down list of countries also
needs the entire list of known countries. That list doesn’t have to be reloaded every time
and can stay cached for the session, and often for the entire application. The registry object
provides a common interface to access that data from wherever it stays—typically, from the
ASP.NET Cache.

 Chapter 10 Testability and Unit Testing 461

FIGuRE 10-4 Viewing customers and orders from a given country

Interacting with Dependencies
The CustomerController class we considered in the previous example is also dependent on a
service that performs most of the searches and updates. It is an inherently more interactive
object that can hardly be ignored. More likely, you need a different version of it for each test.
If you opt for a fake, you must be ready to write several small and similar classes. A mocking
framework (for example, Rhino Mocks) can help you define, in the scope of the test, just the
dynamic object that behaves as you need. Here’s how to mock up the customer service that
retrieves customers and orders, as shown in Figure 10-4:

// Arrange

var service = MockRepository.GenerateMock<ICustomerService>();

service.Expect(s => s.LoadCustomersByCountry("Italy")).Return(

 new List<Customer>()

 {

 new Customer() {Country = "Italy"},

 new Customer() {Country = "Italy"}

 });

// Act

var controller = new CustomerController(serv, new FakeRegistry());

462 Part III Programming Features

The GenerateMock method returns a dynamically created object that implements the
 specified interface. Figure 10-5 shows what you see if you place a breakpoint right after the
call to GenerateMock.

FIGuRE 10-5 Snooping the internals of GenerateMock

The actual type is ICustomerServiceProxyXxx, where Xxx is a GUID. The type exposes methods
as appropriate for the interface it represents. The Expect method that follows the mock
 factory dynamically defines the expected return value for the method when Italy is passed
as an argument:

service.Expect(s => s.LoadCustomersByCountry("Italy")).Return(

 new List<Customer>()

 {

 new Customer() {Country = "Italy"},

 new Customer() {Country = "Italy"}

 });

In this case, the mocked method returns a list of stubs for the Customer type where only the
Country property is set to a default value. For the scope of the test, you don’t really need
to know about other details: the service method is expected to return customers from Italy,
and that’s all that matters. Here are some possible assertions:

// Assert

Assert.AreEqual(model.CurrentCountry, "Italy");

foreach (Customer c in model.Customers)

{

 Assert.AreEqual(c.Country, model.CurrentCountry);

}

The controller’s job in the example we are considering is limited to packaging data for the
view. In particular, it sets the CurrentCountry property on the model object to the country
being processed and fills the Customers property with the list of retrieved customers.

 Chapter 10 Testability and Unit Testing 463

Subsequently, an assertion is required to check whether each customer in the Customers
 collection is based in the specified country.

Mocking the HTTP Context
As mentioned, a big selling point of ASP.NET MVC is its ability to mock up ASP.NET intrinsic
objects such as Session, Request, and Cache. You saw in Chapter 1 that all the objects that
populate the ASP.NET runtime have been abstracted to base classes and interfaces with the
precise purpose of making it easier to test.

It’s fairly obvious that in a Web application at some point you need to access Session or
Cache, and because the vast majority of an ASP.NET MVC application logic lives in controllers,
it’s from within controllers that you need to abstract those dependencies. Without
 abstractions such as the HttpContextBase class, using ASP.NET MVC would not be much
 different than using Web Forms with the MVP pattern.

With that said, you are not supposed to access Session or Cache from the view; it’s the
 controller that needs to access those containers and pass any data down to the view.
How would you test such a controller mocking intrinsic objects? Let’s see a few examples.

Mocking the Session State
Imagine you have a controller method that, at some point, writes some data to the Session
container:

public virtual ActionResult SetColor()

{

 // Do some work using Session

 Session["PreferredColor"] = "Green";

 // Prepare the view

 ViewData["Color"] = "Green";

 return View("Color");

}

The Session object used in the preceding code is a property defined on the Controller class,
as shown here:

public abstract class Controller : ControllerBase, ...

{

 public HttpSessionStateBase Session

 {

 get

 {

 if (this.HttpContext != null)

 return this.HttpContext.Session;

 return null;

 }

 }

.
 .
 .

}

464 Part III Programming Features

As you can see, the property Session is of type HttpSessionStateBase, one of the abstractions
for ASP.NET intrinsic objects. This is the lever that makes it possible to get a fully mocked
 session state.

In a test method, you need a couple of things. First, you need a mock for the HttpContext
object, which is for the container of the Session object. Second, you need a fake for Session
object.

Why a mock for HttpContext and a fake for Session? Functionally speaking, fakes and mocks
are equivalent because both are test doubles. Which one is preferable depends on the
 context and tests you need to write. A mock is easier to use, but sometimes it requires you to
assign a behavior to the various methods. This is easy to do when the behavior is as simple
as returning a given value. To effectively test whether the method correctly updates the
 session state, you need to provide an in-memory object that simulates the behavior of the
original object and has the ability to store information—not exactly an easy task to mock.
Using a fake session class, instead, makes it straightforward. Here’s a minimal yet effective
fake for the session state:

public class FakeSession : HttpSessionStateBase

{

 private Dictionary<String, Object> _sessionItems =

 new Dictionary<String, Object>();

 public override void Add(String name, Object value)

 {

 _sessionItems.Add(name, value);

 }

 public override object this[String name]

 {

 get {

 if(_sessionItems.ContainsKey(name))

 return _sessionItems[name];

 else

 return null;}

 set { _sessionItems[name] = value; }

 }

}

And here’s how to arrange a test:

[TestMethod]

public void Should_Write_To_Session_State()

{

 // Arrange

 var contextBase = MockRepository.GenerateMock<HttpContextBase>();

 contextBase.Expect(s => s.Session).Return(new FakeSession());

 var controller = new HomeController();

 controller.ControllerContext = new ControllerContext(

 contextBase, new RouteData(), controller);

 Chapter 10 Testability and Unit Testing 465

 // Act

 controller.SetColor();

 var test = controller.HttpContext.Session["PreferredColor"];

 // Assert

 Assert.AreEqual(test, "Green");

}

Using Rhino Mocks, you first get a mock for the HTTP context object and next instruct it
to return a new instance of FakeSession whenever it is asked to return the value associated
with the Session property. The final step entails configuring the controller invoker to use
a controller context based on the fake context you just created.

If your controller method only reads from Session, your test can be even simpler and you
can avoid faking the Session entirely. Here’s a sample controller action:

public ActionResult GetColor()

{

 object o = Session["PreferredColor"];

 if (o == null)

 ViewData["Color"] = "No preferred color";

 else

 ViewData["Color"] = o as String;

 return View("Color");

}

The following code snippet shows a possible way to test the method just shown:

// Arrange

var contextBase = MockRepository.GenerateMock<HttpContextBase>();

contextBase.Expect(s => s.Session["PreferredColor"]).Return("Blue");

var controller = new HomeController();

controller.ControllerContext = new ControllerContext(

 contextBase, new RouteData(), controller);

// Act

var result = controller.GetColor() as ViewResult;

if (result == null)

 Assert.Fail("Result is null");

// Assert

Assert.AreEqual(result.ViewData["Color"].ToString(), "Blue");

In this case, you instruct the HTTP context mock to return the string “Blue” when its
Session property is requested to provide a value for the entry “PreferredColor.”

In what is likely the much more common scenario where a controller method needs
to read and write the session state, you need to use the test solution based on
FakeSession.

466 Part III Programming Features

Building a Fake HTTP Context
The same approach discussed for Session can be applied to any other intrinsic object,
 including Request, Server, Response, and User. Here’s a utility that attempts to build a fake
HTTP context for the given controller where a few intrinsic objects are mocked up:

public void FakeHttpContextForController(Controller controller)

{

 var contextBase = MockRepository.GenerateMock<HttpContextBase>();

 var request = MockRepository.GenerateMock<HttpRequestBase>();

 var response = MockRepository.GenerateMock<HttpResponseBase>();

 var server = MockRepository.GenerateMock<HttpServerUtilityBase>();

 contextBase.Expect(c => c.Request).Return(request);

 contextBase.Expect(c => c.Response).Return(response);

 contextBase.Expect(c => c.Server).Return(server);

 var context = new ControllerContext(

 new RequestContext(contextBase, new RouteData()), controller);

 controller.ControllerContext = context;

 return;

}

Consider that many similar pieces of code are available from several blog posts, including
a few from popular Microsoft bloggers such as Scott Hanselman. This is an interesting one:
http://www.hanselman.com/blog/ASPNETMVCSessionAtMix08TDDAndMvcMockHelpers.aspx.

Also notice that MVCContrib—the portal for community contributions to ASP.NET MVC—has
several facilities built for the purpose, in particular the TestHelpers class. You can learn more
about MVCContrib at http://www.codeplex.com/MVCContrib.

Mocking the Request Object
Note that the code shown earlier is necessary, but it will likely be insufficient to pay your
unit testing bills. You probably want to extend it with expectations regarding some specific
members of the various intrinsic objects. For example, here’s how to simulate a GET or POST
request in a test:

public void SetHttpMethodForRequest(HttpContextBase contextBase, string method)

{

 contextBase.Expect(c => Request.HttpMethod).Return(method);

}

When discussing the testing of routes you will commonly also run into code much like the
following:

public void SetUrlForRequest(HttpContextBase contextBase, string url)

{

 contextBase.Expect(c => Request.AppRelativeCurrentExecutionFilePath).Return(url);

}

You probably don’t want to use the Request.Form object to read about posted data from
within a controller because you might find model binders to be more effective. However, if

 Chapter 10 Testability and Unit Testing 467

you have a call to Request.Form[“MyParam”] in one of your controller’s methods, how would
you test it?

// Prepare the fake Form collection

var formCollection = new NameValueCollection();

formCollection["MyParam"] = ...;

// Fake the HTTP context and bind Request.Form to the fake collection

var contextBase = MockRepository.GenerateMock<HttpContextBase>();

contextBase.Expect(c => c.Request.Form).Return(formCollection);

// Assert

.
 .
 .

Clearly, in addition to configuring the Request object you also have to set the fake context on
the controller instance you’re going to test. In this way, every time your code reads anything
through Request.Form it actually ends up reading from the name/value collection provided
for testing purposes.

Mocking the Response Object
Let’s see a few examples that touch on the Response object. For example, you might want to
mock up Response.Write calls by forcing a fake HttpResponse object to write to a text writer
object:

var writer = new StringWriter();

var contextBase = MockRepository.GenerateMock<HttpContextBase>();

contextBase.Expect(c => c.Response).Return(new FakeResponse(writer));

In this case, the FakeResponse class is used as shown here:

public class FakeResponse : HttpResponseBase

{

 private readonly TextWriter _writer;

 public FakeResponse(TextWriter writer)

 {

 _writer = writer;

 }

 public override void Write(string msg)

 {

 _writer.Write(msg);

 }

}

This code will let you test a controller method that has calls to Response.Write like the one
shown here:

public ActionResult Output()

{

 HttpContext.Response.Write("Hello");

 return View();

}

468 Part III Programming Features

Here’s the test:

[TestMethod]

public void Should_Response_Write()

{

 // Arrange

 var writer = new StringWriter();

 var contextBase = MockRepository.GenerateMock<HttpContextBase>();

 contextBase.Expect(c => c.Response).Return(new FakeResponse(writer));

 var controller = new HomeController();

 controller.ControllerContext = new ControllerContext(

 contextBase, new RouteData(), controller);

 // Act

 var result = controller.Output() as ViewResult;

 if (result == null)

 Assert.Fail("Result is null");

 // Assert

 Assert.AreEqual("Hello", writer.ToString());

}

Similarly, you can configure a dynamically generated mock if you need to make certain
 properties or methods to just return a specific value. Here are a couple of examples:

var contextBase = MockRepository.GenerateMock<HttpContextBase>();

// Mock up the Output property

contextBase.Expect(c => Response.Output).Return(new StringWriter());

// Mock up the Content type of the response

contextBase.Expect(c => Response.ContentType).Return("application/json");

For cookies, instead, you might want to mock the Cookies collection on both Request and
Response to return a new instance of the HttpCookieCollection class, which will act as your
cookie container for the scope of the unit test.

Mocking the ASP.NET Cache
Mocking the ASP.NET Cache is a task that deserves a bit more attention, even though mocking
the cache doesn’t require a new approach. The HttpContextBase class has a Cache property,
but you can’t mock it up because the property doesn’t represent an abstraction of the
ASP.NET cache; instead, it is a concrete implementation. Here’s how the Cache property
is declared on the HttpContextBase class:

public abstract class HttpContextBase : IServiceProvider

{

 public virtual Cache Cache { get; }

.
 .
 .

}

 Chapter 10 Testability and Unit Testing 469

The type of the Cache property is actually System.Web.Caching.Cache—the real cache
 object, not an abstraction. Even more unfortunately, the Cache type is sealed and therefore
is not mockable and is unusable in unit tests. As an example, the following Rhino Mocks code
won’t work:

// Fails with an error that says "Can't create mocks of sealed classes"

var cacheBase = MockRepository.GenerateMock<Cache>();

Likewise, the following approach fails also:

// FakeCache should be usable wherever Cache is expected, but this is impossible because

// FakeCache should derive from Cache, which is sealed instead.

contextBase.Expect(c => c.Cache).Return(new FakeCache());

What can you do? There are two options. One entails using the TypeMock Isolator tool,
which is designed to mock any class, including sealed classes. (As mentioned, unlike most
mocking frameworks, TypeMock is a commercial tool.)

The other possibility is using a wrapper class to perform any access to the cache from
 within any code you intend to test. You start by creating the interface of this wrapper object.
At a minimum, a cache wrapper will have an indexer property:

public interface ICacheProvider

{

 object this[String name] { get; set; }

}

You can add more members here to support, add, or remove dependencies and other
 facilities of the real ASP.NET Cache object. Next, you implement the cache wrapper you
would use from within your controllers:

public class MyCache : ICacheProvider

{

 private readonly Cache _aspnetCache;

 public MyCache()

 {

 if (HttpContext.Current != null)

 _aspnetCache = HttpContext.Current.Cache;

 }

 public object this[string name]

 {

 get { return _aspnetCache[name]; }

 set { _aspnetCache[name] = value; }

 }

}

470 Part III Programming Features

Finally, you remove any calls to HttpContext.Cache from your controllers. Your controller will
have the following layout:

public partial class HomeController : Controller

{

 private readonly ICacheProvider _cache;

 public HomeController()

 {

 _cache = new MyCache();

 }

 public HomeController(ICacheProvider cacheProvider)

 {

 _cache = cacheProvider;

 }

 public ActionResult SetCache()

 {

 // HttpContext.Cache["PreferredColor"] = "Blue";

 _cache["PreferredColor"] = "Blue";

 return View();

 }

.
 .
 .

}

Of course, you could also consider moving the initialization of the cache wrapper in some
custom base class to avoid rewriting the same code over and over again.

How would you test this? Here’s an example:

[TestMethod]

public void Should_Write_To_Cache()

{

 // Arrange

 var fakeCache = new FakeCache();

 var controller = new HomeController(fakeCache);

 // Act

 controller.SetCache();

 // Assert

 Assert.AreEqual("Blue", fakeCache["PreferredColor"].ToString());

}

The FakeCache class can be something like this:

public class FakeCache : ICacheProvider

{

 private readonly Dictionary<String, Object> _cacheItems =

 new Dictionary<String, Object>();

 Chapter 10 Testability and Unit Testing 471

 public object this[String name]

 {

 get

 {

 if (_cacheItems.ContainsKey(name))

 return _cacheItems[name];

 else

 return null;

 }

 set { _cacheItems[name] = value; }

 }

}

As you might have noticed, the default constructor of MyCache has an if statement that
checks whether HttpContext.Current is null. Is this really necessary?

if (HttpContext.Current != null)

 _aspnetCache = HttpContext.Current.Cache;

It is not strictly necessary when the code runs in the Web application. In that case, the
Current property is never null. However, if you run that code in the context of a unit test,
HttpContext.Current is always null. This is not a problem for the fixture where you test the
cache because, in this case, you don’t use the default constructor. It is a problem for all
 other tests you perform for the same controller where you use the default constructor.
Without the if, you will get a null reference exception.

Note In this regard, many posts suggest you use HttpRuntime.Cache instead of HttpContext
.Cache everywhere. In doing so, it seems you could save yourself the burden of writing a cache
wrapper.

HttpContext uses HttpRuntime.Cache internally to initialize the object returned by its Cache
property. If necessary, HttpRuntime.Cache can properly and silently initialize the cache container
to be used by the Web application. For this reason, by simply linking the System.Web.Caching
assembly (in ASP.NET 4) you have the cache object available even in unit tests. This configures
a third solution to the problem of mocking the ASP.NET cache: you just don’t mock it up; you use
HttpRuntime.Cache instead of HttpContext.Cache, and it’s always there. In ASP.NET 4, that moves
the caching API to a separate assembly, with the precise purpose of making it available outside
ASP.NET. This seems to be more of a supported solution than a hack.

We’ll see what the trend is in the months ahead. As of today, however, using wrappers remains
my favorite solution.

More Specific Tests
The heart of an ASP.NET MVC application is the controller, and testing the results and
 effectiveness of controller actions is the primary goal of unit testing. Testing controller
 actions means testing the response generated for a given input, but also it means isolating
the controller logic from dependencies such as the service layer, data repositories, the file
system, and especially the ASP.NET HTTP context.

472 Part III Programming Features

Testing, however, doesn’t end with the controller actions and routes that we examined earlier
in this chapter and in Chapter 8. Let’s then review a few other, more specific aspects of
an ASP.NET MVC application that you want to test.

Testing HTML Helpers
In ASP.NET MVC, a view is usually humble and passive, and often it doesn’t require any
 automated test. However, if you have custom HTML helpers—that is, custom extension
methods you use to render HTML into a view—you might want to consider writing a few
unit tests to ensure they produce the markup you expect.

Making assertions for an HTML helper method is not a task that requires a lot of imagination.
There are not too many ways to make it other than asserting that the response you get
matches a given fixed HTML string. Let’s briefly examine one of the Microsoft unit tests for
one of the standard HTML helpers—the CheckBox helper:

[TestMethod]

public void CheckBox_With_Only_Name()

{

 // Arrange

 HtmlHelper helper = HtmlHelperTest.GetHtmlHelper();

 // Act

 MvcHtmlString html = helper.CheckBox("foo");

 // Assert

 Assert.AreEqual(@"<input checked=""checked"" id=""foo"" name=""foo"" " +

 @"type=""checkbox"" value=""true"" />" +

 @"<input name=""foo"" type=""hidden"" value=""false"" />",

 html.ToHtmlString());

}

The most critical part of the test is hidden in the GetHtmlHelper method. A possible
 implementation of the method is shown here:

public static HtmlHelper<object> GetHtmlHelper()

{

 var contextBase = MockRepository.GenerateMock<HttpContextBase>();

 var viewData = new ViewDataDictionary();

 var viewContext = new ViewContext() {

 HttpContext = httpcontext,

 RouteData = new RouteData(),

 ViewData = viewData

 };

 var viewDataContainer = MockRepository.GenerateMock<IViewDataContainer>();

 viewDataContainer.Expect(v => v.ViewData).Returns(viewData);

 var htmlHelper = new HtmlHelper<object>(

 viewContext, viewDataContainer, new RouteCollection());

 return htmlHelper;

}

 Chapter 10 Testability and Unit Testing 473

Most of the work is related to arranging the call; after the call has been made, all that
 remains to be done is literally check the HTML returned against expectations.

Testing Localized Resources
In Chapter 8, we discussed the theme of localization. Sometimes, it is useful to have some
tests that quickly check whether certain parts of the user interface are going to receive
 proper localized resources when a given language is selected. Here’s how to proceed with
a unit test:

[TestMethod]

public void Test_If_Localizated_Strings_Are_Used()

{

 // Arrange

 const string culture = "it-IT";

 var cultureInfo = CultureInfo.CreateSpecificCulture(culture);

 Thread.CurrentThread.CurrentCulture = cultureInfo;

 Thread.CurrentThread.CurrentUICulture = cultureInfo;

 // Act

 string showMeMoreDetails = MyText.Product.ShowMeDetails;

 // Assert

 Assert.AreEqual(showMeMoreDetails, "Maggiori informazioni");

}

In the unit test, you first set the culture on the current thread, and then you attempt to
 retrieve the value for the resource and assert against expected values.

Testing Asynchronous Methods
As you saw in Chapter 4, methods on asynchronous controllers are executed in two distinct
steps. The first step triggers the long-running operation and yields to an operating system
thread outside of the ASP.NET thread pool for any subsequent wait for results. The second
step uses computed results to prepare the view.

An asynchronous method is made of two actual methods, as shown in the following example:

// From MyAsyncController

public void PerformTaskAsync(SomeData data)

{

.
 .
 .

}

public ActionResult PerformTaskCompleted(SomeResponse data)

{

.
 .
 .

}

474 Part III Programming Features

How about testing? Methods are to be tested separately. Let’s tackle the completed method
first. You test it as you would with any other controller method:

[TestMethod]

public void Should_Complete_The_View()

{

 var controller = new MyAsyncController();

 var data = new SomeResponse() { Data="hello" };

 var result = controller.PerformTaskCompleted(data) as ViewResult;

 Assert.IsNotNull(result);

 Assert.AreEqual(result.ViewData["d.Data"], "hello");

}

A bit more interesting is the unit test for the Async method:

[TestMethod]

public void Should_Run_Async()

{

 var controller = new MyAsyncController();

 var waitHandle = new AutoResetEvent(false);

 // Create and attach event handler for the "Finished" event

 EventHandler eventHandler = delegate(object sender, EventArgs e)

 {

 // Signal that the finished event was raised

 waitHandle.Set();

 };

 controller.AsyncManager.Finished += eventHandler;

 string expected = ...;

 var data = new SomeData() {Id = 1};

 controller.PerformTaskAsync(data);

 if (!waitHandle.WaitOne(5000, false))

 {

 // Wait until the event handler is invoked or times out

 Assert.Fail("Test timed out.");

 }

 // data is the entry name used by PerformTaskAsync to forward information

 var response = controller.AsyncManager.Parameters["data"] as SomeResponse;

 Assert.IsNotNull(response);

 Assert.AreEqual(response.Data, expected);

}

The test consists of invoking the Async method using a synchronization tool to prevent
the method from terminating. The waitHandle synchronization object waits at most for
five seconds until it fails. If the method completes before the timeout, an event handler
 associated with the Finished event on the AsyncManager object fires so that you can signal
the lock. The programming paradigm of asynchronous controllers requires that an Async
method use the Parameters dictionary on the AsyncManager object to pass information to
the completed method. The same dictionary can be used in testing to assert expectations.

 Chapter 10 Testability and Unit Testing 475

Note In a layered system, controllers belong to the presentation layer and contain the
logic that triggers the service layer, which in turn scripts the business and data access logic.
Controllers, services, and business components are therefore the primary targets of software
testing.

In addition, testing routes is critical for an application that makes a point of using its own
URL scheme. You might also want to ensure via tests whether the correct result and view are
 generated for each controller action.

Summary
In the .NET space, topics such as software testing, unit testing, and testability have been
overlooked for too many years. Only in the past few years have these topics started gaining
more attention, and only recently have we been able to have a serious test environment in
Visual Studio.

The key point is that you should take the view that your code works only if you can provide
evidence for that. A piece of software can gain the status of working not when someone
(end users, the project manager, the customer, or the chief architect) simply states that it
works, but only when its correctness is proven beyond any reasonable doubt. The final stage
of any project is the acceptance test performed on the system as a whole in its production
 environment. On the way to that, though, unit tests and integration tests make the team
 confident about the work being done and provide evidence of regression at the end of
tough refactoring sessions.

Testability is an attribute of software systems that was recognized some 20 years ago in
the ISO/IEC 9126 paper. Testability refers to aspects of the software design that make the
 software itself easy to test. The fact is, to be easily testable, any piece of software has to be
well designed; separation of concerns, abstractions, and talking to immediate objects are
key assets of any well-designed and testable software.

ASP.NET MVC is well designed itself and makes it easier for a developer to write good quality
code that is easy to test. There’s no magic involved, however. I like to say that ASP.NET MVC
shows you the way to go, and sometimes it takes you to the beginning of the road and
 gently gives you a pat on the shoulder before sending you on your way. You’re alone,
 however, from that moment onward.

In this chapter, I discussed principles, frameworks, and practices of testing. I hope that
I transmitted the sense that ASP.NET MVC is an extremely flexible and extensible platform.
The next chapter—which is also the final chapter—is all about aspects of ASP.NET MVC that
you can customize to unplug certain subsystems and how to roll your own.

 477

Chapter 11

Customizing ASP.NET MVC
We need men who can dream of things that never were.

—John F. Kennedy

ASP.NET MVC was built with extensibility in mind and in full respect of many good design
principles, such as Dependency Inversion, Open/Closed, and Single Responsibility. As obvious
as it might sound, the net effect is just what these principles claim you will get if you apply
them systematically. You can extend the application without changing the source code,
 without painful refactoring, and without heavy regression. If properly designed, your
 application is then open for extensions but closed for modifications.

Because the Open/Closed principle is mostly a driver for architects and developers, the other
two principles provide concrete guidance on how to design classes that favor the injection
of custom components to replace built-in functionalities. The simpler and more well-defined
a class is, the easier it is for developers to customize and replace built-in functionalities. In
this regard, ASP.NET MVC is an excellent example of application design.

Because ASP.NET MVC is ultimately a framework, the benefits of its design will ripple
across any applications built on top of it. In this chapter, my goal is to help you discover the
points of extensibility you find in ASP.NET MVC and to illustrate them with a few examples.
I organized the extensibility points of ASP.NET into three main categories: execution of
 actions, filters, and view rendering.

Note For more information about the aforementioned design principles, often summarized
with the acronym SOLID, you can have a look at a recent book I wrote with Andrea Saltarello,
Microsoft .NET: Architecting Applications for the Enterprise (Microsoft Press, 2008). You might
find it curious that we don’t use the acronym SOLID anywhere in the text; however, the acronym
is a more recent (and nice) invention of some industry gurus. We do, though, cover exactly the
principles that contribute their initials to the acronym: Single Responsibility, Open/Closed, Liskov
Substitution, Interface Segregation, and Dependency Inversion.

The Controller Factory
I spent a lot of time and effort studying the internal implementation of ASP.NET Web Forms.
At the end of the day, any request that hits an ASP.NET Web Forms application is processed
by a class that derives from System.Web.UI.Page. This class implements the IHttpHandler
 interface and does its work through the ProcessRequest method on the IHttpHandler
 interface. Have you ever run across the implementation of this method?

478 Part III Programming Features

ProcessRequest is a rather intricate mishmash of different programming styles, and it forms
a natural habitat for a number of common code smells: long method calls, endless branches,
switch statements, data clumps.

In ASP.NET MVC, any intercepted requests are routed to a new HTTP handler—the
MvcHandler class that you met already in Chapter 2, “The Runtime Environment.” This class is
designed to contain code functionally equivalent to the code in the ProcessRequest method
of the Web Forms’ Page class. The quality of the code in MvcHandler is significantly better—
it’s more readable, far easier to maintain and, in particular, extensible.

To understand the extensibility points of ASP.NET MVC, you have to start from controllers
and their factory. (And possibly also follow the example they provide in your own code.)

ASP.NET MVC Request Processing
On the way to controllers, the first stop is the MvcHandler class, where each ASP.NET
MVC request eventually lands. In Chapter 2, we briefly examined the source code of the
MvcHandler class with the purpose of explaining how an MVC request is processed. In this
context, we’ll get back to that source code with a different aim: to gain an understanding of
the mechanics and identify points of extensibility.

For simplicity, I’ll focus on the synchronous way of processing requests that is coded in
MvcHandler. For asynchronous calls, the same steps occur, but they are split in two distinct
phases—before and after the async point. (See Chapter 4, “Inside Controllers,” for more
 details on asynchronous controllers and asynchronous request processing.)

Inside the MvcHandler Class
The core of an ASP.NET MVC request processing lies in the following code, which is invoked
directly by the ASP.NET runtime:

protected virtual void ProcessRequest(HttpContext httpContext)

{

 HttpContextBase contextBase = new HttpContextWrapper(httpContext);

 this.ProcessRequest(contextBase);

}

In the first place, the original HTTP context is encapsulated in an HttpContextBase class to
decouple the rest of the code from the details of the HTTP runtime environment. These lines
of code are the key for mocking and testability, as discussed in Chapter 10, “Testability and
Unit Testing.”

The second call to ProcessRequest results in the following behavior:

protected virtual void ProcessRequest(HttpContextBase httpContext)

{

 IController controller;

 Chapter 11 Customizing ASP.NET MVC 479

 IControllerFactory factory;

 this.ProcessRequestInit(httpContext, out controller, out factory);

 try

 {

 controller.Execute(this.RequestContext);

 }

 finally

 {

 factory.ReleaseController(controller);

 }

}

The controller in charge of the request is instantiated and configured in ProcessRequestInit.
Then it is given control over the request and released.

The Controller Builder
A first point of extensibility can be found in the ProcessRequestInit method, where the
 process of instantiating the controller is abstracted to a factory. Here are some more details:

private void ProcessRequestInit(

 HttpContextBase context, out IController controller, out IControllerFactory factory)

{

 this.AddVersionHeader(httpContext);

 string requiredString = this.RequestContext.RouteData.GetRequiredString("controller");

 // Get the factory object for the controller

 factory = this.ControllerBuilder.GetControllerFactory();

 // Create the controller

 controller = factory.CreateController(this.RequestContext, requiredString);

 if (controller == null)

 {

 throw new InvalidOperationException();

 }

}

The key thing that is going on in the ProcessRequestInit method occurs in the invocation
of the controller builder. ControllerBuilder is a singleton class that holds the default
 instance of the factory component in charge of creating controller instances:

public ControllerBuilder()

{

.
 .
 .

 DefaultControllerFactory controllerFactory = new DefaultControllerFactory();

 controllerFactory.ControllerBuilder = this;

 this.SetControllerFactory(controllerFactory);

}

The default factory for controllers is the DefaultControllerFactory class. This class gets the
type of the controller class to instantiate and uses .NET reflection to activate it. In doing so,
it assumes a default constructor on the controller class and defaults to that.

480 Part III Programming Features

The Default Controller Factory
As you can see in the preceding code snippets, the ControllerBuilder class encapsulates
an instance of the controller factory and makes it available through a pair of getter and setter
methods. In particular, the SetControllerFactory method is the tool you can use to unplug the
default controller factory and roll your own.

In Chapter 8, “The ASP.NET MVC Infrastructure,” I demonstrated how to leverage the
SetControllerFactory method to introduce an Inversion of Control (IoC)–based controller
 factory that can automatically resolve the chain of dependencies rooted in the controller class.

You register your custom controller factory in Application_Start and have it kick in every time
a request is made:

protected void Application_Start()

{

.
 .
 .

 // Create and register an IoC-based factory (using the Unity framework)

 var container = new UnityContainer();

 IControllerFactory factory = new MyAppControllerFactory(container);

 ControllerBuilder.Current.SetControllerFactory(factory);

}

At this point, the logic of the controller factory is up to you.

Even though a controller factory is abstracted to a specific interface—the IControllerFactory
interface—you probably want to start from the DefaultControllerFactory class to create your
own factory. At any rate, the IControllerFactory interface is shown here:

public interface IControllerFactory

{

 IController CreateController(RequestContext requestContext, string controllerName);

 void ReleaseController(IController controller);

}

The DefaultControllerFactory class implements the interface, but it also exposes overridable
methods at a slightly more granular level than the raw interface.

Extending the Default Controller Factory
In the DefaultControllerFactory class, the CreateController method is a two-step operation:
getting the controller’s type and getting an instance of that type. For both of these actions,
the DefaultControllerFactory class offers a ready-made virtual method. As a result, there are

 Chapter 11 Customizing ASP.NET MVC 481

three aspects of a controller factory that you might want to customize: getting the type for
the controller in charge of the current request, getting the controller instance, and releasing
the controller instance.

Here’s the list of methods on the DefaultControllerFactory class that you might want to override:

protected virtual IController GetControllerInstance(Type controllerType);

protected virtual Type GetControllerType(string controllerName);

public virtual void ReleaseController(IController controller);

Let’s examine each scenario in more detail.

Getting the Controller Type
You override the GetControllerType method if you want to change the naming convention
applied to resolve the controller type. The default convention entails that the controller type
name be whatever strings result from appending the word “Controller” to the controller
name. The controller name is the string passed as an argument to the method and obtained
from the route processing.

When the default URL scheme is used, the controller name is the first token of the URL that
follows the server name. For example, it will be Home for a URL such as http://yourserver/
home/index. The GetControllerType method on the default factory just returns a Type object
for the name HomeController:

You can change the default naming algorithm by using the following code:

protected override Type GetControllerType(string controllerName)

{

 string defaultNamespace = "NorthwindCms.Controllers";

 string suffix = "MyController";

 // Prepare the type name

 string typeName = String.Format("{0}.{1}.{2}",

 defaultNamespace, controllerName, suffix);

 // Build and return a Type object.

 // This is NOT an instance of the controller; the assembly with the type

 // definition must be loaded in the AppDomain.

 return Type.GetType(typeName);

}

Note that the method returns a Type object that describes the class to instantiate later, not
one that is already an instance of the controller type. In addition, the assembly where the
type is defined must be available in the current AppDomain. Figure 11-1 shows the exception
you get if the type can’t be found.

482 Part III Programming Features

FIGuRE 11-1 The method couldn’t find a type for the specified controller name.

The Controller Type Cache
It’s interesting to find out more about the way in which the default controller factory gets the
type for a controller name. For performance reasons, the default factory uses a type cache.
The type cache is implemented in the ControllerTypeCache class. During its initialization,
this class enumerates all the referenced assemblies and explores them, looking for publicly
 exposed controller types. A controller type is recognized by the following code:

static bool IsControllerType(Type t)

{

 return

 t != null &&

 t.IsPublic &&

 t.Name.EndsWith("Controller", StringComparison.OrdinalIgnoreCase) &&

 !t.IsAbstract &&

 typeof(IController).IsAssignableFrom(t);

}

The controller type has to be public and nonabstract; its name must terminate with the suffix
Controller, and it must be assignable to an IController variable.

The controller type cache uses a dictionary to store controller types and keep them mapped
to controller names. The key in the dictionary is the controller name (for example, Home
when the type is HomeController), and the value in the dictionary is a LINQ lookup table.
A LINQ lookup table is a dictionary object with additional capabilities. Nested dictionaries are
required in ASP.NET MVC version 2 to take into proper account areas and situations in which
the same controller name is used in different namespaces.

The controller type cache is fully identified by the declaration shown here:

var _typeCache = new Dictionary<string, ILookup<string, Type>>();

 Chapter 11 Customizing ASP.NET MVC 483

Figure 11-2 provides a graphical view of the controller type cache.

Controller name

Home

Product

Contoso.Test

Contoso.Test

Contoso

Type object

Type object

Namespace name

Namespace name

Contoso.
HomeController

Contoso.Test.
HomeController

Contoso.Test.
ProductController

ProductController<empty>

ILookup<string, Type>

FIGuRE 11-2 A graphical representation of the controller type cache

The topmost part of the figure shows the layout of the dictionary, whereas the bottom part
illustrates some sample content.

Customizing the Controller Name
When the default URL scheme is used, the controller name is the first token of the URL
that follows the server name. If you opt for a custom URL routing scheme, identifying the
 controller name is up to you. The controller name can be one of the segments in the URL, it
can be a fixed class, or it can even be determined algorithmically.

What matters is that the name of the controller needs to be stored in the route dictionary
so that the ASP.NET MVC infrastructure can get it using the following code:

// From any context where you have access to a valid instance of RequestContext

string controllerName = requestContext.RouteData.GetRequiredString("controller");

The following example demonstrates a custom route where the controller token is not
 specified explicitly, but it results from the composition of two other tokens:

routes.Add(

 "CompositeRoute",

 new Route("{app}/{context}/{action}/{id}",

 new RouteValueDictionary(new { context="home", action = "Index", id = ""}),

 new CompositeRouteHandler())

);

For example, a valid URL could be http://yourserver/blogs/home. The logic to determine the
name of the controller class to serve a request belongs to the route handler. For a custom
route, you clearly need a custom route handler. In the sample code, the resolved controller

484 Part III Programming Features

name is something like Blogs_Home_ for a resulting controller type of
Blogs_Home_Controller—at least if you stick to the default algorithm for getting the
 controller type. Here’s the custom route handler:

public class CompositeRouteHandler: IRouteHandler

{

 public IHttpHandler GetHttpHandler(RequestContext requestContext)

 {

 // Get route data as extracted from the URL definition

 var routeData = requestContext.RouteData;

 // Complete route data with a programmatically created "controller" entry

 string controllerName = String.Format("{0}_{1}_",

 requestContext.RouteData.GetRequiredString("app"),

 requestContext.RouteData.GetRequiredString("context"));

 routeData.Values.Add("controller", controllerName);

 // Return the default MVC HTTP handler for the configured request

 return new MvcHandler(requestContext);

 }

}

A route handler is a class that implements the IRouteHandler interface. In the GetHttpHandler
member, it first reads any route data that’s available and then algorithmically determines
the controller name and adds it to the route data dictionary of the current request context.
Finally, the updated request context is passed to the default ASP.NET MVC HTTP handler to
serve the request.

Note Just as for the controller name, the action name also can be programmatically configured
in a custom URL scheme. All you do is figure out the name of the action by applying any
 necessary logic and then store it in the RouteData collection under the key of “action.”

Getting the Controller Instance
The GetControllerInstance method on the controller factory class is responsible for returning
a concrete instance of the controller type that was found by GetControllerType. The two
methods are bound together in the implementation of CreateController in the default
 controller factory class:

public virtual IController CreateController(

 RequestContext requestContext, string controllerName)

{

 // Check preconditions

.
 .
 .

 //

 Type controllerType = this.GetControllerType(requestContext, controllerName);

 return this.GetControllerInstance(requestContext, controllerType);

}

 Chapter 11 Customizing ASP.NET MVC 485

You override this method when you need to change something in the way in which
a controller is instantiated. Here’s the implementation of the method in the default factory:

protected virtual IController GetControllerInstance(

 RequestContext requestContext, Type controllerType)

{

 // Check preconditions

 IController controller;

 if (controllerType == null)

 throw new HttpException();

 if (!typeof(IController).IsAssignableFrom(controllerType))

 throw new ArgumentException();

 // Get the instance

 try

 {

 controller = (IController) Activator.CreateInstance(controllerType);

 }

 catch (Exception exception)

 {

 throw new InvalidOperationException();

 }

 return controller;

}

Here’s a common implementation based on an IoC container. (This is the same
 implementation we considered in Chapter 8.)

protected override IController GetControllerInstance(

 RequestContext requestContext, Type controllerType)

{

 // Note: the signature of this method has changed in the transition

 // from ASP.NET MVC 1 to ASP.NET MVC 2. In the latest version,

 // the RequestContext argument has been added.

 if (controllerType == null)

 return null;

 // Container is a property on the factory class that exposes the IoC container

 var controller = Container.Resolve(controllerType) as Controller;

 if (controller == null)

 return null;

 // Further customize the newly created controller instance

.
 .
 .

 return controller;

}

A common reason for replacing the controller factory is to enable dependency injection
and enable scenarios where the controller class receives a reference to the service layer class,
the data access repository, or whatever other cross-cutting dependencies it might need.

486 Part III Programming Features

The IoC-based approach is also helpful when you have to distinguish between various types
and initialize each in a different way. However, if for whatever reason the controller type is
not configurable through the IoC, the following code will still work:

protected override IController GetControllerInstance(Type controllerType)

{

 if (controllerType == null)

 return null;

 if(controllerType == typeof(HomeController))

 {

.
 .
 .

 }

 if(controllerType == typeof(ProductController))

 {

.
 .
 .

 }

 // More code here

.
 .
 .

}

The factory is also the place where you can add the code that configures any instance
of a controller. This typically happens when you have a base controller class with custom
 properties. Another scenario is when you need to customize the action invoker. I’ll return to
this in a moment.

Releasing the Controller Instance
The controller factory also exposes a method that provides for the disposal of the controller
instance. Most of the time, you don’t need code significantly different from the following,
which is the default implementation of the method in DefaultControllerFactory:

public virtual void ReleaseController(IController controller)

{

 IDisposable disposable = controller as IDisposable;

 if (disposable != null)

 {

 disposable.Dispose();

 }

}

However, if your controller instantiates its own resources, that is a good place to get rid of
them. When you employ an IoC container to create the controller instance, you might also
want to tear the instance down in the container; so here’s the code for Unity:

public override void ReleaseController(IController controller)

{

 // Container is the reference to the Unity container

 Container.Teardown(controller);

}

 Chapter 11 Customizing ASP.NET MVC 487

Similar code probably will be needed for any IoC container you happen to use, including
the newest Managed Extensibility Framework (MEF) that Microsoft ships with the .NET
Framework 4.

Note When you use an IoC container to instantiate a controller, you probably don’t need more
than a transient instance created intentionally for the request and disposed of at the end of the
request life cycle. However, a custom controller class might have injected via IoC a number of
external objects—for example, proxies for WCF services. Objects injected via IoC in the context
of a controller might be configured with a different lifetime (for example, singletons). It turns
out that disposing of them in ReleaseController might be way too early to dispose of them and
cause trouble. This is not necessarily a problem, but just take it into account when overriding
ReleaseController.

Invoking Actions
After it has the controller instance, the MvcHandler class proceeds and tasks the controller
with the execution of the current request. This is done via a call to the Execute method on the
controller class. The Execute method is defined in the IController interface that any controller
class is called to implement.

As you saw in Chapter 4, the core functionality of a controller is split among a few classes,
including ControllerBase, Controller, and then your specific controller class. The Execute
method, in particular, is implemented on the ControllerBase class and the very core of it is
 re -exposed through a protected abstract method named ExecuteCore:

protected abstract void ExecuteCore()

You might find it interesting to take a second glance at the source code of ExecuteCore in
the class Controller to identify new points of extensibility:

// From class Controller

protected override void ExecuteCore()

{

 this.PossiblyLoadTempData();

 try

 {

 string requiredString = this.RouteData.GetRequiredString("action");

 if (!this.ActionInvoker.InvokeAction(base.ControllerContext, requiredString))

 {

 this.HandleUnknownAction(requiredString);

 }

 }

 finally

 {

 this.PossiblySaveTempData();

 }

}

488 Part III Programming Features

Regardless of the code at the beginning and end that deals with the loading and unloading
of the TempData collection, the key things to note about the ExecuteCore method are going
on in the try block. The action associated with the request is invoked through the services of
an ad hoc component—the action invoker. The action invoker controls a number of aspects
related to the execution of each action and, more importantly, it is exposed as a public
 property out of the Controller class.

Role of the Action Invoker
The invoker represents the class responsible for invoking the action methods of a controller.
It implements the internal life cycle of each ASP.NET MVC request. The action invoker is
an object that implements the IActionInvoker interface. A default invoker is provided through
the ActionInvoker property of the controller class. As you can see, the property is a plain
get/set property:

public IActionInvoker ActionInvoker

{

 get

 {

 if (this._actionInvoker == null)

 {

 this._actionInvoker = this.CreateActionInvoker();

 }

 return this._actionInvoker;

 }

 set

 {

 this._actionInvoker = value;

 }

}

From the property implementation, it turns out that that the action invoker can be changed
at will for any controller. However, because the invoker is involved at quite an early stage of
the request life cycle, you probably need a controller factory to replace the default invoker
with your own. Alternately, you can define a custom controller base class and override
the CreateActionInvoker method to return the invoker you need. This is the approach that
the ASP.NET MVC framework employs to support the asynchronous execution of controller
actions:

public abstract class AsyncController : Controller, ...

{

.
 .
 .

 protected override IActionInvoker CreateActionInvoker()

 {

 return new AsyncControllerActionInvoker();

 }

}

 Chapter 11 Customizing ASP.NET MVC 489

The action invoker is built around the IActionInvoker interface. The interface is fairly
simple—it exposes just one method:

public interface IActionInvoker

{

 bool InvokeAction(ControllerContext controllerContext, string actionName);

}

Although the overall behavior of an action is clear, the specific steps it performs depend on
the implementation and context. A few tasks, however, are common to any implementation.

The Default Action Invoker
The task list of an action invoker includes at least the following steps:

n Getting the controller descriptor

n Getting the action descriptor

n Getting the list of action filters

n Checking the authorization permissions of the user

n Validating the request against potentially dangerous posted data

n Invoking the action while taking into account any registered filters

n Taking care of any unhandled exceptions

These are also the tasks accomplished by the default action invoker. The default action
 invoker class is ControllerActionInvoker. Let’s look at some more details.

Controller Descriptors
A controller descriptor is a class that encapsulates information that collectively describes
a controller, such as its name, type, attributes, and actions. The invoker builds its own cache
of descriptors using .NET reflection. The default invoker gets the descriptor for a particular
controller context using the following method:

protected virtual ControllerDescriptor GetControllerDescriptor(

 ControllerContext controllerContext)

{

 // Get the type of the controller class

 Type controllerType = controllerContext.Controller.GetType();

 Func<ControllerDescriptor> creator = delegate {

 return new ReflectedControllerDescriptor(controllerType);

 };

 // Retrieve the descriptor from the cache or create a new one on the fly

 return this.DescriptorCache.GetDescriptor(controllerType, creator);

}

490 Part III Programming Features

By overriding the GetControllerDescriptor method in your custom action invoker class, you
can modify the way in which controller information is retrieved and cached. Note, though,
that the DescriptorCache member is marked as internal and, as such, it is not available in a
derived class. This means that you can still override the way in which a controller descriptor is
retrieved, but in doing so you also make yourself responsible for implementing a descriptor
cache. Of course, having a descriptor cache is not mandatory; it is merely a way to improve
performance on a very frequent operation that occurs for each ASP.NET MVC request.

A possible scenario in which you might want to delve this deep into the internal architecture
of an action invoker and controller descriptors is when you decide to keep the configuration
of controllers (attributes and actions) out of the controller classes—for example, in
an external file that can be updated without recompiling and redeploying the application.
Here’s the code you need in this case:

protected virtual ControllerDescriptor GetControllerDescriptor(

 ControllerContext controllerContext)

{

 // Get the type of the controller class

 Type controllerType = controllerContext.Controller.GetType();

 Func<ControllerDescriptor> creator = delegate {

 return new DynamicControllerDescriptor(controllerType);

 };

 // Retrieve the descriptor from the cache or create a new one on the fly

 return this.MyDescriptorCache.GetDescriptor(controllerType, creator);

}

You provide a custom DynamicControllerDescriptor class that will probably inherit from
ControllerDescriptor and override some of the methods listed here:

public abstract class ControllerDescriptor : ICustomAttributeProvider

{

 // Properties

 public virtual string ControllerName { get; }

 public abstract Type ControllerType { get; }

 // Method

 public abstract ActionDescriptor[] GetCanonicalActions();

 public virtual object[] GetCustomAttributes(bool inherit);

 public abstract ActionDescriptor FindAction(

 ControllerContext controllerContext, string actionName);

 public virtual object[] GetCustomAttributes(

 Type attributeType, bool inherit);

 public virtual bool IsDefined(

 Type attributeType, bool inherit);

}

The method GetCanonicalActions in particular returns a list of action descriptors for all the
methods that are available on a controller. For example, you can find this feature useful
to enable or disable certain features of your application for certain users or in certain
time frames.

 Chapter 11 Customizing ASP.NET MVC 491

The Controller Descriptor Cache
In the preceding code snippet, where I showed a possible override of the
GetControllerDescriptor method on the action invoker, at some point you see a member
named MyDescriptionCache. What’s that?

As mentioned, for some reason ASP.NET MVC doesn’t give you access to either the internal
descriptor cache or the class used to implement it. At this point, in the case of a custom
 controller descriptor engine, either you create your own cache or you do without caching.

In the default action invoker, the descriptor cache is a static type/descriptor dictionary that
has just one peculiarity: it is a cache built around the ReaderWriterLockSlim class from System.
Threading. The name of the cache class is ControllerDescriptorCache. As a result, the cache
class manages read/write access to the descriptors in a multithreaded environment, allowing
multiple threads for reading and exclusive access for writing.

Because a cache is always a great thing for frequent operations, you definitely need one.
So you can’t reuse the descriptor cache as implemented in ASP.NET MVC, but you can
 borrow its source code and bring it into your applications. No hidden dependencies prevent
that from happening in a process that overall is seamless and smooth. (And this is definitely
a great statement in support of the quality of the ASP.NET MVC source code.)

Here’s a piece of the resulting custom action invoker that overrides the controller descriptor
cache:

public class MyActionInvoker : ControllerActionInvoker

{

 private static readonly ControllerDescriptorCache _staticDescriptorCache;

 private ControllerDescriptorCache _instanceDescriptorCache;

 static MyActionInvoker()

 {

 _staticDescriptorCache = new ControllerDescriptorCache();

 }

 internal ControllerDescriptorCache MyDescriptorCache

 {

 get

 {

 if (this._instanceDescriptorCache == null)

 this._instanceDescriptorCache = _staticDescriptorCache;

 return this._instanceDescriptorCache;

 }

 set

 {

 this._instanceDescriptorCache = value;

 }

 }

492 Part III Programming Features

 protected override ControllerDescriptor GetControllerDescriptor(

 ControllerContext controllerContext)

 {

 // Get the type of the controller class

 Type controllerType = controllerContext.Controller.GetType();

 Func<ControllerDescriptor> creator = delegate {

 return new DynamicControllerDescriptor(controllerType);

 };

 // Retrieve the descriptor from the cache or

 return this.MyDescriptorCache.GetDescriptor(controllerType, creator);

 }

.
 .
 .

}

The implementation of the sample DynamicControllerDescriptor cache can be as simple
as in the following code snippet:

public class DynamicControllerDescriptor : ReflectedControllerDescriptor

{

 public DynamicControllerDescriptor(Type controllerType) : base(controllerType)

 {

 }

 public override ActionDescriptor FindAction(

 ControllerContext controllerContext, string actionName)

 {

 var disabledMethods = GetDisabledActionMethods(controllerContext);

 if (disabledMethods.Contains(actionName))

 return null;

 return base.FindAction(controllerContext, actionName);

 }

 private string[] GetDisabledActionMethods(ControllerContext context)

 {

 string controllerName = context.RouteData.GetRequiredString("controller");

 // Disable action Index on Home controller. This content can be easily

 // read from a file

 if (String.Equals(controllerName, "Home"))

 return new string[] { "Index" };

 return new string[] { };

 }

}

When an action is invoked, the FindAction method on the descriptor class is invoked to find
related information. At this point, a custom descriptor that reads its input from an offline file
can decide about which method to eventually execute. The code snippet shows how to deny
execution of an otherwise well-defined method. As a result, the user receives the message
in Figure 11-3.

 Chapter 11 Customizing ASP.NET MVC 493

FIGuRE 11-3 The action Index cannot be executed.

Action Descriptors
The power of custom descriptors doesn’t end here. You can leverage the same mechanism
to enable actions that correspond to nonpublic methods or even enable actions that are
 defined on classes different from the controller class. In this case, though, you need to deal
with action descriptors:

public class DynamicControllerDescriptor : ReflectedControllerDescriptor

{

 public DynamicControllerDescriptor(Type controllerType) : base(controllerType)

 {

 }

 public override ActionDescriptor FindAction(

 ControllerContext controllerContext, string actionName)

 {

 var enabledMethods = GetEnabledActionMethods(controllerContext);

 if (enabledMethods.Contains(actionName))

 {

 var methodInfo = GetMethodInfo(this.ControllerType, actionName);

 return new DynamicActionDescriptor(methodInfo, actionName, this);

 }

 return base.FindAction(controllerContext, actionName);

 }

 protected virtual string[] GetEnabledActionMethods(ControllerContext context)

 {

 string controllerName = context.RouteData.GetRequiredString("controller");

 // Enable Index on Home controller regardless of the settings on HomeController

 if (String.Equals(controllerName, "Home"))

 return new string[] { "Index" };

 return new string[] { };

 }

494 Part III Programming Features

 private MethodInfo GetMethodInfo(Type type, string actionName)

 {

 var flags = BindingFlags.Public | BindingFlags.NonPublic | BindingFlags.Instance;

 return type.GetMethod(actionName, flags);

 }

}

public class DynamicActionDescriptor : ReflectedActionDescriptor

{

 public DynamicActionDescriptor(

 MethodInfo methodInfo, string actionName, ControllerDescriptor controllerDescriptor)

 : base(methodInfo, actionName, controllerDescriptor)

 {

 }

}

This time, the method FindAction reads the list of valid actions from an external source. In the
source code, the variable enabledMethods—an array of strings—contains the name of the
method to be executed when a given action string is specified through the route.

If the code finds a match between the required action and the list of enabled methods, it
 creates an action descriptor on the fly and plugs it into the existing ASP.NET MVC machinery.

As in the listing, a new action descriptor is required that wraps method information. The
 example assumes that the method to execute still belongs to the controller type and uses
.NET reflection to get some dynamic information:

private MethodInfo GetMethodInfo(Type type, string actionName)

{

 var flags = BindingFlags.Public | BindingFlags.NonPublic | BindingFlags.Instance;

 return type.GetMethod(actionName, flags);

}

The implementation just shown also enables you to invoke a private member on the
 controller class. In this way, you can have all private or NonAction members on the controller
class and still be able to execute them.

More in general, the real power of action and controller descriptors is that they provide
a way to decouple the name of the requested action from the method that actually executes
it. This link defaults to some conventions that are established via reflection and coded in the
classes ReflectedControllerDescriptor and ReflectedActionDescriptor.

The code shown here demonstrates that, in some cases, you can take control of even this
aspect of ASP.NET MVC. It’s not a feature you want to use in every application, but it is useful
for making the application more resilient and capable of supporting dynamic addition (or
subtraction) of features based on temporary situations, such as advertisement campaigns,
reward systems, and special working modes such as maintenance.

 Chapter 11 Customizing ASP.NET MVC 495

Important Let me state it once more and as a stand-alone statement. In ASP.NET MVC, the
 action requested is not necessarily a segment of the URL, and the method that runs in response
is not necessarily a public method on the matching controller class. This is only the default
 behavior, and it is fully customizable.

Custom Invokers
Controller and action descriptors are governed by a custom action invoker. As mentioned,
you can set a custom invoker either in the constructor of a common base controller class
or using a controller factory. The effect is the same; the choice is up to you.

If you already have a base controller class, you can just instantiate the invoker in the
 controller class constructor. Of course, inheriting from the base class is a necessary condition
to take advantage of the new invoker. Alternately, you can set up a controller factory and set
the invoker there. In this case, you get the benefits of the new invoker with no further effort
of your own.

Here’s what you need when you opt for a custom factory:

protected override IController GetControllerInstance(

 RequestContext requestContext, Type controllerType)

{

 if (controllerType == null)

 return null;

 // Instantiate the controller via IoC

 var controller = AppContext.Container.Resolve(controllerType) as IController;

 if (controller == null)

 return null;

 // Attach the new invoker via IoC

 controller.ActionInvoker = AppContext.Container.Resolve<IActionInvoker>();

 return controller;

}

You are not forced, of course, to use an IoC container. In Chapter 8, I walked you through
an interesting scenario where a custom invoker was the perfect solution: switching the
 language of a view.

public class MyActionInvoker : ControllerActionInvoker

{

 public override bool InvokeAction(

 ControllerContext controllerContext, string actionName)

 {

 // Set the language as read out of the cache (or other source)

 string lang = GetLocale(controllerContext);

 Thread.CurrentThread.CurrentUICulture = CultureInfo.CreateSpecificCulture(lang);

496 Part III Programming Features

 // Business as usual. . .except that any invoked view detects the new locale

 return base.InvokeAction(controllerContext, actionName);

 }

 protected virtual string GetLocale(ControllerContext context)

 {

 string language = ...;

 return language;

 }

}

The action invoker gives you control over the entire process behind the execution of
a request. You need a custom invoker only in a small number of circumstances. Most of
the ASP.NET controller customization occurs through just one of the specific aspects that
an invoker makes customizable: action filters.

Action Filters
An action filter is a piece of code that runs around the execution of an action method.
An action filter, though, has nothing to do with the way in which the code for an action
method is resolved. If you let ASP.NET MVC resolve an action method via reflection, an action
filter is likely a custom attribute you use to decorate the method on the controller class.
If you use your own action resolver, the action filter is simply an instance of a dynamically
 loaded class whose name can be read from any source, including a configuration file.

You already met action filters in Chapter 4. Let’s now go through a short gallery of examples.

Gallery of Action Filters
An action filter is an attribute that provides a declarative means to attach some behavior
to a controller’s action method. By writing an action filter, you can hook up the execution
pipeline of an action method and adapt it to your needs. In this way, you can take out of the
controller class any logic that doesn‘t strictly belong to the controller. In doing so, you make
this particular behavior reusable and, more importantly, optional. Action filters are ideal for
implementing cross-cutting concerns that affect the life of your controllers.

ASP.NET MVC comes with a few predefined filters, such those you met in Chapter 4:
HandleError, Authorize, and OutputCache to name just a few. Action filters are classified
in different types depending on the tasks they actually accomplish. An action filter is
 characterized by an interface; you have a different interface for each type of filter. Special
action filters are exception filters, authorization filters, and result filters. Table 11-1 lists the
types of action filters in ASP.NET MVC. (For more details on these interfaces, refer back to
Chapter 4.)

 Chapter 11 Customizing ASP.NET MVC 497

TABLE 11-1 Types of action filters in ASP.NET MVC

Filter Interfaces Description

IActionFilter Defines two methods that execute before and after the controller
action

IAuthorizationFilter Defines a method that executes early in the action pipeline, giving you
a chance to verify whether the user is authorized to perform the action

IExceptionFilter Defines a method that runs whenever an exception is thrown during the
execution of the controller action

IResultFilter Defines two methods that execute before and after the processing of the
action result

When it comes to writing an action filter, you typically inherit from FilterAttribute and then
implement one or more of the interfaces defined in Table 11-1.

The FilterAttribute class is an abstract class that defines only one property, as shown here:

public abstract class FilterAttribute : Attribute

{

 // Fields

 private int _order;

 // Methods

 protected FilterAttribute();

 // Properties

 public int Order { get; set; }

}

The Order property refers to the order in which the filter will be executed. No order is
 defined by default on action filters. Unless explicitly set, the Order property is assumed to
be –1, which means the filter will be run in no particular order. Note that if you explicitly
set the same order on two or more action filters on a method, an exception will be thrown.
The ActionFilterAttribute class is another, richer, base class for creating your custom action
filters. It inherits from FilterAttribute and provides a default implementation for all the
 interfaces listed in Table 11-1.

Let’s take a closer look at some sample action filters.

Browser-Specific Views
Offering the same view and user experience across different browsers is an old problem
of Web developers. ASP.NET Web Forms supports browser-specific master pages and also
 allows you to assign browser-specific values to control properties. By creating an HTTP
 module, you can also redirect the original request made to a given URL to another URL that
offers the same content but that is optimized for the current browser.

498 Part III Programming Features

In ASP.NET MVC, a similar solution is perhaps too much of a hack, because a simpler
and neater approach exists that is based on action filters. The idea is to write a custom
 action filter that kicks in just before the action invoker begins processing the action result.
According to the classification introduced earlier in the chapter, this technically is a result
 filter. Let’s have a look at the source code:

public class BrowserSpecificAttribute : ActionFilterAttribute

{

 public override void OnResultExecuting(ResultExecutingContext filterContext)

 {

.
 .
 .

 }

}

The filter inherits from ActionFilterAttribute and overrides the method OnResultExecuting.
The method is invoked after the execution of the action method but before the result of the
action is processed to generate the response for the browser:

public override void OnResultExecuting(ResultExecutingContext filterContext)

{

 // Get the action result based on which the view will be generated

 var viewResult = filterContext.Result as ViewResult;

 if (viewResult == null)

 return;

 // You never reach this point if the method returned anything different

 // from ViewResult such as JsonResult or FileResult.

 // Get the name of the view as requested by the action method

 string viewName = viewResult.ViewName;

 // Retrieve the name of the browser that placed the request

 var controllerContext = filterContext.Controller.ControllerContext;

 string browserName = controllerContext.HttpContext.Request.Browser.Browser;

 // Based on the browser name, sets the name of the new view to use.

 string newViewName = GetViewNameForBrowser(viewName, browserName);

 // Check whether the current view engine supports such a view

 ViewEngineResult result = ViewEngines.Engines.FindView(

 controllerContext, newViewName, viewResult.MasterName);

 // If the view is supported, then set it as the view to use for rendering

 if (result.View != null)

 viewResult.ViewName = newViewName;

}

The algorithm employed is simple. Using the ControllerContext object, the filter retrieves the
Request object from the request context; from there, it gets to know the capabilities of the

 Chapter 11 Customizing ASP.NET MVC 499

current browser. The browser name is used as a discriminator to decide about the next view
to select. The following listing shows a possible implementation of the algorithm that maps
a view name to a browser-specific version of that view:

public string GetViewNameForBrowser(string viewName, string browserName)

{

 // Assume views named like Index_IE or Index_Firefox

 return String.Format("{0}_{1}", viewName, browserName);

}

The code assumes that given a view named Index, an Internet Explorer–specific version of the
view is named Index_IE, a version for Firefox is named Index_Firefox, and so forth.

After the filter has determined the name of the candidate view to show, it also checks with
the current view engine to see whether such a view is supported. If so, the ViewName
 property of the ViewResult to render is set to the browser-specific view. If no browser-specific
view is found, you need to do nothing else because the generic view invoked by the action
method remains in place.

As you can see, this is a rather generic solution that assumes a fixed naming convention for
browser-specific views. You can further refine this solution by defining a bunch of public
properties on the BrowserSpecificAttribute class, through which you can control the name
of the view for a particular browser:

public class BrowserSpecificAttribute : ActionFilterAttribute

{

 public string Firefox {get; set;}

 public string InternetExplorer {get; set;}

.
 .
 .

 public override void OnResultExecuting(ResultExecutingContext filterContext)

 {

.
 .
 .

 }

}

Using the attribute couldn’t be easier. All you need to do is decorate the controller method
with the attribute, as shown here:

[BrowserSpecific]

public virtual ActionResult Index()

{

.
 .
 .

}

An action filter like this will save you from adding a bunch of if statements to
each controller method to return a different ViewResult object for each supported browser.

Boykma
Text Box
Download from Wow! ebook <www.wowebook.com>

500 Part III Programming Features

public virtual ActionResult Index()

{

 if(GetCurrentBrowser() == "IE")

 return View("Index_IE");

.
 .
 .

}

That code is still necessary if you intend to provide optimized views, but an action filter takes
it from the controller class, thus simplifying the entire design.

Linking Data Shared Across Views
In Chapter 6, “Inside Models,” we ran across an interesting point while discussing how data
should be passed from the controller down to the view. It is not unlikely that a view needs
more data than can be managed by the controller method that invokes the view. This
 typically happens when the view incorporates some fixed data that is shared with other views
(for example, menus and breadcrumbs) but for some reason was not stored in a master page.

In Chapter 6, I discussed the use of a registry object to store any data that is global so that
the controller can simply reference the registry to populate the view model object the view is
based on. However, I also hinted at another solution that many members in the community
employed or at least discussed. This alternate solution is based on an action filter.

To put the solution in context, imagine that you find yourself needing to pass data to the
view that is not strictly dependent on what the current action method does. That is not data
calculated by the method; rather, it is global data stored somewhere that you don’t want the
view to retrieve on its own so that you can avoid having (too much?) logic and complexity
leak into the view.

The logic of the action filter is simple: it accesses the data and loads it into the ViewData
 collection for the view to retrieve it. Let’s start with the controller code:

[AddGlobalData]

public virtual ActionResult Find(string id)

{

 // Find a particular customer

 . .
 .

 // Prepare the view-model object

 var model = new CustomerViewModel();

 model.Customer = ...;

 // Return the view

 return View("Find", model);

}

 Chapter 11 Customizing ASP.NET MVC 501

The view-model object (or the ViewData collection if you opt for a generic data container)
contains just the data that the controller method manipulates directly. Any other data
 required by the view, but unrelated to the current operation, will be added by the action
 filter, named AddGlobalData in the example. Here’s some code for the filter:

public class AddGlobalDataAttribute : ActionFilterAttribute

{

 public override void OnActionExecuted(ActionExecutedContext filterContext)

 {

 // Retrieve global data

 var data = "Global data";

 // Add global data to the ViewData dictionary to make it

 // available to the view

 filterContext.Controller.ViewData.Add("GlobalData", data);

 }

}

The trick works just fine and suffers from just one little bug. It forces you to use ViewData
to pass data from the controller to the view. You might have a strongly typed view at the
 controller level but still need to resort to a weakly typed ViewData for global data.

To sum it up, nothing prevents you from writing the code shown here:

var model = filterContext.ViewData.Model as CustomerViewModel;

if (model == null)

 return;

model.GlobalData = data;

However, in this case you are forced to link your code to a specific type. CustomerViewModel,
which is used in the example, might work in one scenario, but it won’t necessarily work for
any views that need global data. A possible solution is to derive any view-model class that
needs global data from a common base class that exposes members to get and set that data.
As long as all view models employed within action methods decorated with AddGlobalData
inherit from GlobalContainerViewModel, the following code works:

// Segregating the view model type to a section works in this case,

// as in the current context you're interested only in the segment of

// the view model that contains global data

var model = filterContext.ViewData.Model as GlobalContainerViewModel;

if (model == null)

 return;

model.GlobalData = data;

If your application is compiled with Microsoft Visual Studio 2010 against the Microsoft .NET
Framework 4, you can take advantage of the new features of C# 4, such as the dynamic
 keyword. The following code compiles and works just fine:

// Tells the compiler the variable model will be resolved at run time

dynamic model = filterContext.Controller.ViewData.Model;

model.GlobalData = data;

502 Part III Programming Features

Using the dynamic keyword saves you from creating the base class that would otherwise be
required in .NET 3.5. However, in my opinion, using the base class instead eliminates some
run-time burden and keeps the code cleaner and easier to read.

Compressing the Response
These days, HTTP compression is a feature that nearly every Web site can afford because the
number of browsers having trouble with that is approaching zero. (Any browser released in
the past ten years recognizes most popular compression schemes.)

In ASP.NET Web Forms, compression is commonly achieved through HTTP modules that
intercept any request and compress the response. You can also enable compression at the
Microsoft Internet Information Services (IIS) level. Both options work well in ASP.NET MVC,
so the decision is up to you. You typically make your decision based on the parameters you
need to control, including the MIME type of the resource to compress, level of compression,
files to compress, and so forth.

ASP.NET MVC makes it particularly easy to implement a third option—an action-specific filter
that sets things up for compression. In this way, you can control a specific URL without the
need to write an HTTP module. Let’s go through another example of an action filter that will
add compression to the response stream for a particular method.

In general, HTTP compression is controlled by two parameters: the Accept-Encoding
header sent by the browser with each request, and the Content-Encoding header sent
by the Web server with each response. The Accept-Encoding header indicates that the
browser is able to handle only the specified encodings—typically, gzip and deflate. The
 Content-Encoding header indicates the compression format of the response. Note that the
Accept-Encoding header is just a request sent by the browser; in no way should the server
feel obliged to return compressed content, but neither should the server return content the
browser has not specifically identified it can handle.

When it comes to writing a compression filter, the hardest part is fully understanding what
the browser is requesting. Here’s some code that works:

public class CompressAttribute : ActionFilterAttribute

{

 public override void OnActionExecuting(ActionExecutingContext filterContext)

 {

 // Analyze the list of acceptable encodings

 var preferredEncoding = GetPreferredEncoding(filterContext.HttpContext.Request);

 // Compress the response accordingly

 var response = filterContext.HttpContext.Response;

 response.AppendHeader("Content-encoding", preferredEncoding.ToString());

 Chapter 11 Customizing ASP.NET MVC 503

 if (preferredEncoding == CompressionScheme.Gzip)

 response.Filter = new GZipStream(response.Filter, CompressionMode.Compress);

 if (preferredEncoding == CompressionScheme.Deflate)

 response.Filter = new DeflateStream(response.Filter, CompressionMode.Compress);

 return;

 }

 private CompressionScheme GetPreferredEncoding(HttpRequest request)

 {

 string acceptableEncoding = request.Headers["Accept-Encoding"].ToLower();

 if (acceptableEncoding.Contains("gzip"))

 return CompressionScheme.Gzip;

 if (acceptableEncoding.Contains("deflate"))

 return CompressionScheme.Deflate;

 return CompressionScheme.Identity;

 }

 enum CompressionScheme

 {

 Gzip = 0,

 Deflate = 1,

 Identity = 2

 }

}

You apply the Compress attribute to the method as follows:

[Compress]

public ActionResult Index()

{

.
 .
 .

}

Figure 11-4 demonstrates that the content-encoding response header is set correctly and the
response is understood and decompressed within the browser.

Almost any browser sets the Accept-Encoding header to the string “gzip, deflate,” which
is not the only possibility. As you can read in RFC 2616 (see http://www.w3.org/Protocols/
rfc2616/rfc2616-sec14.html), an Accept header field supports the q parameter as a way to
assign a priority to an acceptable value. The following strings are acceptable values for
an encoding:

gzip, deflate

gzip;q=.7,deflate

gzip;q=.5,deflate;q=.5,identity

504 Part III Programming Features

FIGuRE 11-4 FireBug shows the content-encoding response header.

Even though gzip appears in all strings, only in the first one is it the preferred choice. If
a value is not specified, the q parameter is set to 1; this assigns to deflate in the second string
and to identity in the third string a higher rank than gzip. So simply checking whether gzip
appears in the encoding string still sends back something the browser can accept, but it
doesn’t take the browser’s preference into full account. To write a Compress attribute that
takes into account the priority (if any) expressed through the q parameter, you need to refine
the GetPreferredEncoding method, as shown here:

private CompressionScheme GetPreferredEncoding(HttpRequest request)

{

 string acceptableEncoding = request.Headers["Accept-Encoding"].ToLower();

 acceptableEncoding = SortEncodings(acceptableEncoding);

 if (acceptableEncoding.Contains("gzip"))

 return CompressionScheme.Gzip;

 if (acceptableEncoding.Contains("deflate"))

 return CompressionScheme.Deflate;

 return CompressionScheme.Identity;

}

The SortEncodings method will parse the header string and extract the segment of it that
 corresponds to the choice with the highest priority.

 Chapter 11 Customizing ASP.NET MVC 505

Loading Action Filters Dynamically
Action filters are therefore a powerful mechanism for developers to use to decide exactly
how a given action method executes. From what we have seen so far, however, action filters
are also a static mechanism that requires a new compile-and-deploy step to be modified.
Let’s explore an approach to loading filters dynamically from an external source.

Interception Points for Filters
Filters are resolved for each action method within the action invoker. There are two main
points of interception: the GetFilters and InvokeActionMethodWithFilters methods. Both
methods are marked as protected and virtual. The signature of both methods is shown here:

protected virtual ActionExecutedContext InvokeActionMethodWithFilters(

 ControllerContext controllerContext,

 IList<IActionFilter> filters,

 ActionDescriptor actionDescriptor,

 IDictionary<string, object> parameters);

protected virtual FilterInfo GetFilters(

 ControllerContext controllerContext,

 ActionDescriptor actionDescriptor)

The GetFilters method is invoked earlier and is expected to return the list of all filters for
a given action. After invoking the base method of GetFilters in your custom invoker, you have
available the full list of filters for each category—that is, a list including exception, result,
 authorization, and action filters. Note that the FilterInfo class—a public class in
System.Web.Mvc—offers specific collections of filters for each category:

public class FilterInfo

{

 // Private members

.
 .
 .

 public IList<IActionFilter> ActionFilters { get; }

 public IList<IAuthorizationFilter> AuthorizationFilters { get; }

 public IList<IExceptionFilter> ExceptionFilters { get; }

 public IList<IResultFilter> ResultFilters { get; }

}

The InvokeActionMethodWithFilters method is invoked during the process related to the
performance of the action method. In this case, the method receives only the list of action
filters—that is, those filters that are to execute before or after the code for the method.

Adding an Action Filter Using Fluent Code
By overriding the InvokeActionMethodWithFilters method, you can use fluent code to
 configure controllers and controller methods with action filters. (For information about fluent

506 Part III Programming Features

code, see http://en.wikipedia.org/wiki/Fluent_interface.) The following code shows how to add
the Compress attribute on the fly to the Index method of the Home controller:

protected override ActionExecutedContext InvokeActionMethodWithFilters(

 ControllerContext controllerContext,

 IList<IActionFilter> filters,

 ActionDescriptor actionDescriptor,

 IDictionary<string, object> parameters)

{

 // Add the Compress action filter to the Index method of the Home controller

 if (actionDescriptor.ControllerDescriptor.ControllerName == "Home" &&

 actionDescriptor.ActionName == "Index")

 {

 // Configure the filter and add to the list

 var compressFilter = new CompressAttribute();

 filters.Add(compressFilter);

 }

 // Go with the usual behavior and execute the action

 return base.InvokeActionMethodWithFilters(

 controllerContext, filters, actionDescriptor, parameters);

}

This code can be refined in a number of aspects. For example, you can support areas
and check the controller type rather than the name. In addition, you can read the filters to
add from a configuration file and also use an IoC container to resolve them all.

More in general, this approach gives you a chance to dynamically configure the filters, and it
also lets you keep attributes out of the controller code. This piece of code has the same value
as the RegisterInstance methods of Unity (and similar IoC frameworks) or the fluent API of
NHibernate and Entity Framework.

Building Up Filters via an IoC Container
Another aspect of filter attributes you can customize is their ultimate behavior. This feature
is kind of orthogonal to the previous one because it can be applied regardless of the way in
which you register your filters—whether declaratively through attributes or via fluent code.

Suppose you have a Logging filter. The purpose of such a filter is pretty clear: you want it to
log some information. But where? The logger component might or might not be integrated
into the filter. You might want to have a scheme like that shown here:

public class LoggingAttribute : ActionFilterAttribute

{

 public ILogger Logger {get; set;}

 public override void OnActionExecuting(ActionExecutingContext filterContext)

 {

 // Use the Logger component here

.
 .
 .

 }

}

 Chapter 11 Customizing ASP.NET MVC 507

How can you inject the logger component into the filter? The easiest (and also most natural)
way of achieving that is using an IoC container. Let’s work out an example where we use
an IoC container, but we’ll base the example on the BrowserSpecific filter we created earlier.
(Tailoring the example to logging is trivial.)

The BrowserSpecific filter changes the name of the view based on the current browser
agent. In our previous implementation, the logic to decide about the new view name was
hard-coded. Let’s make it pluggable through Unity:

public class BrowserSpecificAttribute : ActionFilterAttribute

{

 [Dependency]

 public IBrowserViewMapper Mapper { get; set; }

 public override void OnResultExecuting(ResultExecutingContext filterContext)

 {

 var viewResult = filterContext.Result as ViewResult;

 if (viewResult == null)

 return;

 string viewName = viewResult.ViewName;

 ControllerContext context = filterContext.Controller.ControllerContext;

 string browserName = context.HttpContext.Request.Browser.Browser;

 // Get the name of the browser-specific view to use

 string newViewName = string.Empty;

 if (Mapper == null)

 newViewName = GetViewNameForBrowserInternal(viewName, browserName);

 else

 newViewName = Mapper.GetViewName(viewName, browserName);

 if (!String.IsNullOrEmpty(newViewName))

 {

 ViewEngineResult result = ViewEngines.Engines.FindView(

 context, newViewName, viewResult.MasterName);

 if (result.View != null)

 viewResult.ViewName = newViewName;

 }

 }

 // Hard-coded logic for picking up the browser-specific view name

 private string GetViewNameForBrowserInternal(string viewName, string browserName)

 {

 return String.Format("{0}_{1}", viewName, browserName);

 }

}

The filter now includes an injectable property that corresponds to a component of type
IBrowserViewMapper:

public interface IBrowserViewMapper

{

 string GetViewName(string viewName, string browserName);

}

508 Part III Programming Features

The next challenge to take is resolving the dependency. If you opt for a fluent syntax,
your code creates the instance of the filter. You can use the IoC resolver to ensure that
all dependencies are properly injected into the filter.

What if, instead, you attach filters using attributes? In this case, you need to override the
GetFilters method on the action invoker class:

protected override FilterInfo GetFilters(

 ControllerContext controllerContext, ActionDescriptor actionDescriptor)

{

 var filters = base.GetFilters(controllerContext, actionDescriptor);

 foreach (var filter in filters.ActionFilters)

 {

 if (filter is ActionFilterAttribute)

 {

 // If no mapping is defined for the filter

 // you get an exception

 try

 {

 AppContext.Container.BuildUp(filter.GetType(), filter);

 }

 catch(ResolutionFailedException)

 {

 }

 }

 }

 return filters;

}

Note that the ActionFilters collection also includes the controller type. You normally
don’t have dependencies to build up at this time, so you check the type in order to skip
controller types.

If you registered filters via attributes, ASP.NET MVC has already instantiated them. You
use the BuildUp method of the Unity container to inject dependencies on existing objects.
(This feature is supported by all IoC frameworks.)

Note The try/catch block in the preceding code is not strictly necessary. To avoid using it,
you simply define a mapping for any pending dependencies the filter might have. Note that
Unity throws a ResolutionFailedException if the object has pending dependencies that can’t be
 resolved. The implementation of BrowserSpecific, shown earlier, assumes a default hard-coded
behavior for the property Mapper. The expected behavior, therefore, is that the dependency, if
any, is loaded and the default behavior is adhered to otherwise. For this to happen, a try/catch
block is required.

 Chapter 11 Customizing ASP.NET MVC 509

Action Selectors
Another special category of filters are action selectors. Action selectors come in two distinct
flavors: action method selectors and action name selectors. Selectors kick in before the
 process that leads to executing the action code starts. In a way, the selector is responsible for
validating the action method being executed and determines whether it is a valid action or
not. Action method selectors validate the request against some runtime conditions. Action
name selectors, on the other hand, check whether the action requested has a valid name.
Both attributes are applied to action methods in a controller class.

Selecting an Action by Name
The base class for action name selectors is ActionNameSelectorAttribute. The class has
a simple structure, as the code here demonstrates:

public abstract class ActionNameSelectorAttribute : Attribute

{

 public abstract bool IsValidName(

 ControllerContext controllerContext, string actionName, MethodInfo methodInfo);

}

The purpose of the selector is simple: checking whether the action name is valid or not.
In ASP.NET MVC, there’s just one action name selector: the ActionName attribute that you
can use to alias a controller method. You encountered the ActionName attribute in Chapter 7,
“Data Entry in ASP.NET MVC,” in the discussion about the Post-Redirect-Get pattern for input
forms.

[ActionName("Edit"), AcceptVerbs(HttpVerbs.Post)]

public ActionResult EditViaPost(string listCustomers)

{

 string customerId = listCustomers;

 return RedirectToAction("Edit",

 new RouteValueDictionary(new { id = customerId }));

}

The implementation of the ActionName attribute is trivial, as the following code demonstrates:

public sealed class ActionNameAttribute : ActionNameSelectorAttribute

{

 public ActionNameAttribute(string name)

 {

 if (string.IsNullOrEmpty(name))

 throw new ArgumentException(MvcResources.Common_NullOrEmpty, "name");

 this.Name = name;

 }

510 Part III Programming Features

 public override bool IsValidName(

 ControllerContext controllerContext, string actionName, MethodInfo methodInfo)

 {

 // Check that the action name matches the specified name

 return string.Equals(actionName, this.Name, StringComparison.OrdinalIgnoreCase);

 }

 public string Name { get; set; }

}

The net effect of the attribute is that it logically renames the controller method it is applied
to. For example, in the previous example the method is named EditViaPost, but it won’t be
invoked unless the action name that results from the routing process is Edit.

Action Method Selectors
Action method selectors are a more powerful and interesting tool for developers. Such
a selector is specifically designed to skip requests when certain runtime conditions hold.
Here’s the definition of the base class:

public abstract class ActionMethodSelectorAttribute : Attribute

{

 public abstract bool IsValidForRequest(

 ControllerContext controllerContext, MethodInfo methodInfo);

}

Also, in this case, the role of the class is straightforward. In ASP.NET MVC, quite a few
 predefined method selectors exist. They are AcceptVerbs, NonAction, plus a bunch of
 HTTP-specific selectors introduced with ASP.NET MVC 2 to simplify coding (HttpDelete,
HttpGet, HttpPost, and HttpPut). Let’s have a look at some of them.

The NonAction attribute just prevents the processing of the current action. Here’s how it’s
implemented:

public override bool IsValidForRequest(

 ControllerContext controllerContext, MethodInfo methodInfo)

{

 return false;

}

The AcceptVerbs attribute receives the list of supported HTTP verbs as an argument
and checks the current verb against the list. Here are some details:

public override bool IsValidForRequest(

 ControllerContext controllerContext, MethodInfo methodInfo)

{

 if (controllerContext == null)

 throw new ArgumentNullException("controllerContext");

 // Get the (overridden) HTTP method

 string method = controllerContext.HttpContext.Request.GetHttpMethodOverride();

 Chapter 11 Customizing ASP.NET MVC 511

 // Verbs is an internal member of the AcceptVerbsAttribute class

 return Verbs.Contains<string>(method, StringComparer.OrdinalIgnoreCase);

}

Note the use of the GetHttpMethodOverride method to retrieve the actual verb intended
by the client. The method reads the value in a header field or parameter named X-HTTP-
Method-Override. (See http://code.google.com/apis/gdata/docs/2.0/basics.html#UpdatingEntry
for more information about X-HTTP-Method-Override). This is a common protocol for letting
browsers place any HTTP verbs even though the physical request is either GET or POST.
The method is not defined natively on the HttpRequest object, but it was added in ASP.NET
MVC only as an extension method on HttpRequestBase.

The other selectors are simply implemented in terms of AcceptVerbs, as shown here for
HttpPost:

public sealed class HttpPostAttribute : ActionMethodSelectorAttribute

{

 private static readonly AcceptVerbsAttribute _innerAttribute;

 public override bool IsValidForRequest(

 ControllerContext controllerContext, MethodInfo methodInfo)

 {

 return _innerAttribute.IsValidForRequest(controllerContext, methodInfo);

 }

}

Let’s see how to write a custom method selector. All you need is a class that inherits from
ActionMethodSelectorAttribute and overrides the IsValidForRequest method. The code here
is a refinement of a selector available with the ASP.NET MVC Futures. (See http://aspnet
.codeplex.com/releases/view/39978.)

[AttributeUsage(AttributeTargets.Method, AllowMultiple = false, Inherited = true)]

public sealed class AcceptAjaxAttribute : ActionMethodSelectorAttribute

{

 private bool _shouldAcceptAjaxRequest;

 public AcceptAjaxAttribute()

 {

 _shouldAcceptAjaxRequests = true;

 }

 public AcceptAjaxAttribute(bool shouldAcceptAjaxRequests)

 {

 _shouldAcceptAjaxRequests = shouldAcceptAjaxRequests;

 }

 public override bool IsValidForRequest(

 ControllerContext controllerContext, MethodInfo methodInfo)

 {

 if (controllerContext == null)

 throw new ArgumentNullException("controllerContext");

512 Part III Programming Features

 // Figure out whether this is an AJAX request or not

 bool isAjaxRequest = controllerContext.HttpContext.Request.IsAjaxRequest();

 if (!isAjaxRequest)

 return true;

 return (isAjaxRequest == _shouldAcceptAjaxRequests);

 }

}

The AcceptAjax attribute accepts a Boolean parameter to decide whether AJAX requests are
valid or not. Next, the selector figures out the type of the current request and matches it to
the input received. A variation of this selector could be one that accepts only AJAX calls.

Action Results and Rendering
As you have read thus far, there are many ways to control the process of performing the
 requested action. Let’s move to the next stage now and consider the tools you have to
 customize the production and presentation of the action result.

Processing the Result of the Action
The actual return value of any controller action is an object that inherits from ActionResult.
As the name suggests, this object represents the result of the action. It embeds data
and knows how to process it in order to generate the response for the browser.

This is an important point to note: the ActionResult object is not what the client browser is
going to receive. Getting an ActionResult object is only the first step to finalizing the request.

Generating the Response for the Browser
The response for the browser is generated and written to the output stream when the
ActionResult object, as returned by the controller action method, is further processed by the
action invoker. In this regard, you can consider the ActionResult class as a way to encapsulate
a particular type of response you want to send to the browser. The response certainly
 comprehends the actual data, but it also includes the content type, the status code, and any
cookies and headers you intend to send. All of these things are aspects of the response you
might want to control through a tailor-made ActionResult class.

As you saw already in Chapter 5, “Inside Views,” the method that governs the processing of
the action result is InvokeActionResult, which is defined on the default action invoker:

protected virtual void InvokeActionResult(

 ControllerContext controllerContext, ActionResult actionResult)

{

 actionResult.ExecuteResult(controllerContext);

}

 Chapter 11 Customizing ASP.NET MVC 513

The ActionResult object is defined as follows:

public abstract class ActionResult

{

 protected ActionResult()

 {

 }

 public abstract void ExecuteResult(ControllerContext context);

}

The actual action result classes that you use in your applications, including the numerous
 action result classes defined by ASP.NET MVC, extend the base class with a few public
 properties to store the concrete data that ExecuteResult will eventually render to the browser.

Dissecting Some Built-in Action Result Classes
To understand the mechanics of an action result object, it is useful to look at
a couple of action result classes built into ASP.NET MVC. One of the simplest is the
HttpUnauthorizedResult class:

public class HttpUnauthorizedResult : ActionResult

{

 public override void ExecuteResult(ControllerContext context)

 {

 if (context == null)

 throw new ArgumentNullException("context");

 // Prepare the response for the browser

 context.HttpContext.Response.StatusCode = 0x191;

 }

}

As you can see, all it does is set the status code of the response object. This class is used by
the Authorize action filter when it turns out that the user behind the current request is not
authorized. Here’s a code snippet from the source code of the Authorize filter:

public virtual void OnAuthorization(AuthorizationContext filterContext)

{

.
 .
 .

 if (this.AuthorizeCore(filterContext.HttpContext))

 {

.
 .
 .

 }

 else

 {

 // If authorization failed, then the response for the request

 // is determined by the Response object as configured by the

 // HttpUnauthorizedResult class

 filterContext.Result = new HttpUnauthorizedResult();

 }

}

514 Part III Programming Features

A slightly more sophisticated example is the JavaScriptResult class. This class supplies a public
property—the Script property—that contains the script code to write to the output stream:

public class JavaScriptResult : ActionResult

{

 public string Script { get; set; }

 public override void ExecuteResult(ControllerContext context)

 {

 if (context == null)

 throw new ArgumentNullException("context");

 // Prepare the response

 HttpResponseBase response = context.HttpContext.Response;

 response.ContentType = "application/x-javascript";

 if (Script != null)

 response.Write(Script);

 }

}

You use the JavaScriptResult class from the action method, as shown here:

public JavaScriptResult GetScript()

{

 string script = ...;

 return JavaScriptResult(script);

}

Note that, strictly speaking, a controller action method is not forced to return an ActionResult
object. However, be aware that whatever type you return will be wrapped up in a
ContentResult object by the ASP.NET MVC framework. If the method is void, on the other
hand, the action result will be an EmptyResult object. By using action filters, you can modify
the result object, and its parameters, at will. So in the end, you can still have a controller
method declared to return nothing, but tailor that to return a value with an action filter
 attached that programmatically returns a given result object.

Custom ActionResult Objects
Ultimately, the action result object is a way to encapsulate all the tasks you need
to accomplish in particular situations, such as when a requested resource is missing or
 redirected or when some special response must be served to the browser. Let’s examine
a few interesting scenarios for having custom action result objects.

The PermanentRedirectResult Object
In Chapter 8, we discussed permanent redirection as an aspect of a Web application that
can have a nontrivial impact on Search Engine Optimization (SEO). Suppose that at some
point you decide to expose a given feature of your application through another URL but

 Chapter 11 Customizing ASP.NET MVC 515

still need to support the old URL. To increase your SEO ratio, you might want to implement
a permanent redirect instead of a classic (temporary) HTTP 302 redirect.

ASP.NET MVC supplies a RedirectResult class, but it lacks a PermanentRedirectResult class.
Here’s a possible implementation that follows closely that of RedirectResult in ASP.NET MVC 2:

public class PermanentRedirectResult : ActionResult

{

 public string Url { get; set; }

 public bool ShouldEndResponse { get; set; }

 public PermanentRedirectResult(string url)

 {

 if (String.IsNullOrEmpty(url))

 throw new ArgumentException("url");

 Url = url;

 ShouldEndResponse = false;

 }

 public override void ExecuteResult(ControllerContext context)

 {

 // Preconditions

 if (context == null)

 throw new ArgumentNullException("context");

 if (context.IsChildAction)

 throw new InvalidOperationException();

 // Mark all keys in the TempData dictionary for retention

 context.Controller.TempData.Keep();

 // Prepare the response

 string url = UrlHelper.GenerateContentUrl(Url, context.HttpContext);

 HttpResponseBase response = context.HttpContext.Response;

 response.Clear();

 response.StatusCode = 301;

 response.AddHeader("Location", url);

 // Optionally end the request

 if (ShouldEndResponse)

 response.End();

 }

}

By having this class available, you can easily move your features around without affecting the
SEO level of your application:

public ActionResult Old()

{

 string newUrl = "/Home/Index";

 return new PermanentRedirectResult(newUrl);

}

Figure 11-5 shows the results in FireBug.

516 Part III Programming Features

FIGuRE 11-5 The original URL results are permanently moved.

A Syndication Result Object
If you search the Web for a nontrivial example of an action result, you likely find a syndication
action result object at the top of the list. Let’s briefly go through this popular example.

The class SyndicationResult supports both RSS 2.0 and ATOM 1.0 and offers a handy
 property for you to choose programmatically. By default, the class produces an RSS 2.0 feed.
To compile this example, you need to reference the System.ServiceModel.Web assembly
and import the System.ServiceModel.Syndication namespace:

public class SyndicationResult : ActionResult

{

 public SyndicationFeed Feed { get; set; }

 public FeedType Type { get; set; }

 public SyndicationResult()

 {

 Type = FeedType.Rss;

 }

 Chapter 11 Customizing ASP.NET MVC 517

 public SyndicationResult(

 string title, string description, Uri uri, IEnumerable<SyndicationItem> items)

 {

 Type = FeedType.Rss;

 Feed = new SyndicationFeed(title, description, uri, items);

 }

 public SyndicationResult(SyndicationFeed feed)

 {

 Type = FeedType.Rss;

 Feed = feed;

 }

 public override void ExecuteResult(ControllerContext context)

 {

 // Set the content type

 context.HttpContext.Response.ContentType = GetContentType();

 // Create the feed and write it to the output stream

 var feedFormatter = GetFeedFormatter();

 var writer = XmlWriter.Create(context.HttpContext.Response.Output);

 if (writer == null)

 return;

 feedFormatter.WriteTo(writer);

 writer.Close();

 }

 private string GetContentType()

 {

 if(Type == FeedType.Atom)

 return "application/atom+xml";

 return "application/rss+xml";

 }

 private SyndicationFeedFormatter GetFeedFormatter()

 {

 if (Type == FeedType.Atom)

 return new Atom10FeedFormatter(Feed);

 return new Rss20FeedFormatter(Feed);

 }

}

public enum FeedType

{

 Rss = 0,

 Atom = 1

}

The class gets a syndication feed and just serializes it to the client using either the
RSS 2.0 or ATOM 1.0 format. Creating a consumable feed is another story; but it is also
a concern that belongs to the controller rather than to the infrastructure. Here’s how to write
a controller method that returns a feed:

public SyndicationResult Blog()

{

 var items = new List<SyndicationItem>();

 items.Add(new SyndicationItem(

 "Controller descriptors",

518 Part III Programming Features

 "This post shows how to customize controller descriptors",

 null));

 items.Add(new SyndicationItem(

 "Action filters",

 "Using a fluent API to define action filters",

 null));

 items.Add(new SyndicationItem(

 "Custom action results",

 "Create a custom action result for syndication data",

 null));

 var result = new SyndicationResult(

 "Programming ASP.NET MVC 2",

 "Dino's latest book",

 Request.Url,

 items);

 result.Type = FeedType.Atom;

 return result;

}

You create a list of SyndicationItem objects and provide for each a title, some content, and
an alternate link (null in the code snippet). You typically retrieve these items from some
 repository you might have in your application. Finally, you pass items to the SyndicationResult
object along with a title and description for the feed to be created and serialized. Figure 11-6
shows an ATOM feed in Internet Explorer.

FIGuRE 11-6 An ATOM feed displayed in Internet Explorer

 Chapter 11 Customizing ASP.NET MVC 519

Returning Binary Data
A common developer need is returning binary data from a request. Under the umbrella of
binary data fall many different types of data, such as the pixels of an image, the content of
a PDF file, or even a Silverlight package.

You don’t really need an ad hoc action result object to deal with binary data. Among the
built-in action result objects, you can certainly find one that helps you when working with
binary data. If the content you want to transfer is stored within a disk file, you can use the
FilePathResult object. If the content is available through a stream, you use FileStreamResult
and opt for FileContentResult if you have it available as a byte array. All these objects
 derive from FileResult and differ from one another only in how they write out data
to the response stream. Let’s briefly review how ExecuteResult works within FileResult:

public override void ExecuteResult(ControllerContext context)

{

 if (context == null)

 throw new ArgumentNullException("context");

 HttpResponseBase response = context.HttpContext.Response;

 response.ContentType = this.ContentType;

 if (!String.IsNullOrEmpty(this.FileDownloadName))

 {

 string headerValue = ContentDispositionUtil.GetHeaderValue(FileDownloadName);

 context.HttpContext.Response.AddHeader("Content-Disposition", headerValue);

 }

 // Write content to the output stream

 WriteFile(response);

}

The class has a public property named ContentType through which you communicate
the MIME type of the response and which does all of its work via an abstract
method—WriteFile—that derived classes must necessarily override.

The base class FileResult also supports the Save As dialog box within the client browser
through the Content-Disposition header. The property FileDownloadName specifies the
default name the file will be given in the browser’s Save As dialog. The Content-Disposition
header has the following format, where XXX stands for the value of the FileDownloadName
property:

Content-Disposition: attachment; filename=XXX

Note that the file name should be in the US-ASCII character set and no directory path
 information is allowed. Finally, the MIME type must be unknown to the browser; otherwise,
the registered handler will be used to process the content.

520 Part III Programming Features

Inside Built-in Binary Action Result Classes
The delta between the base class FileResult and derived classes is mostly related to the
 implementation of the WriteFile method. In particular, FileContentResult writes an array of
bytes straight to the output stream, as shown here:

// FileContents is a property on FileContentResults that points to the bytes

protected override void WriteFile(HttpResponseBase response)

{

 response.OutputStream.Write(FileContents, 0, FileContents.Length);

}

FileStreamResult offers a different implementation. It has a FileStream property that provides
the data to read, and the code in WriteFile reads and writes in a buffered way:

protected override void WriteFile(HttpResponseBase response)

{

 Stream outputStream = response.OutputStream;

 using (FileStream)

 {

 byte[] buffer = new byte[0x1000];

 while (true)

 {

 int count = FileStream.Read(buffer, 0, 0x1000);

 if (count == 0)

 return;

 outputStream.Write(buffer, 0, count);

 }

 }

}

Finally, FilePathResult copies an existing file to the output stream. The implementation of
WriteFile is quite minimal in this case:

// FileName is the name of the file to read and transmit

protected override void WriteFile(HttpResponseBase response)

{

 response.TransmitFile(FileName);

}

With these classes available, you can deal with any sort of binary data that you need to serve
programmatically from a URL.

Important Speaking of binary data, I must note that an ASP.NET MVC endpoint is not
 necessarily the fastest way to serve this kind of data. Using a plain HTTP handler as the endpoint
results in leaner processing and, likely, in a faster response. Using an HTTP handler to serve,
say, an image stored into a database is significantly more efficient than using an ASP.NET Web
Forms page. With ASP.NETMVC, the gap is reduced but still remains favorable to HTTP handlers.
In summary, I definitely invite you to consider HTTP handlers when it comes to serving binary
data to Web clients.

 Chapter 11 Customizing ASP.NET MVC 521

View Engines
In ASP.NET MVC, generating the view is a process completely separated from the calculation
of the data to be displayed. In Chapter 5, we discussed the mechanism behind the rendering
of the view. The most important aspect of the rendering engine in ASP.NET MVC is that it is
replaceable.

The view engine is the part of ASP.NET MVC that parses a template file to produce an HTML
response when the action method is expected to serve HTML to the user. By default,
ASP.NET MVC requires you to write the view file using an ASPX-compatible markup that will
be processed through the same internal machinery used by ASP.NET Web Forms. In this way,
you can use server controls, user controls, master pages, and themes, as well as code blocks
interspersed with HTML literals and markup elements.

As mentioned, the view engine is abstracted by the IViewEngine interface, making it possible
for third-party companies and the community to develop alternate engines based on
a different syntax. Many view engines have been proposed over the past couple of years, but
the only serious alternative to the default view engine seems to be the Spark view engine.

Providing full coverage of Spark probably deserves an entire chapter, if not a book, of its
own. In this chapter, my goal is simply to discuss the pluggability mechanism of ASP.NET
MVC views that makes it possible to use Spark today. In doing so, I’ll also take a quick look at
some of the samples that come with the package. For further documentation and even the
source code, you can start from http://sparkviewengine.com.

Adding an Alternate View Engine
In ASP.NET MVC, the static class ViewEngines represents the collection of view engines that
are currently available to the application. The class is coded as follows:

public static class ViewEngines

{

 // Fields

 private static readonly ViewEngineCollection _engines;

 // Methods

 static ViewEngines()

 {

 ViewEngineCollection engines = new ViewEngineCollection();

 engines.Add(new WebFormViewEngine());

 _engines = engines;

 }

 // Properties

 public static ViewEngineCollection Engines

 {

 get { return _engines; }

 }

}

522 Part III Programming Features

It turns out that each and every ASP.NET MVC application has at least one view engine
 registered, and that view engine understands the Web Forms ASPX markup. To add your
own view engine—whether it is a new engine or simply a customized version of the standard
 engine that just supports different locations for templates—you write some code to
global.asax. The following code registers the Spark view engine:

protected void Application_Start(object sender, EventArgs e)

{

 // Your own default stuff here

 RegisterRoutes(RouteTable.Routes);

.
 .
 .

 // Register the Spark view engine (as long as the Spark

 // assemblies are properly referenced)

 SparkEngineStarter.RegisterViewEngine();

}

If you’re wondering where the code is that adds a new IViewEngine object to the Engines
 collection, here is a code snippet taken from the source code of the Spark library:

public static void RegisterViewEngine()

{

 ViewEngines.Engines.Add(CreateViewEngine());

}

public static IViewEngine CreateViewEngine()

{

 return CreateContainer().GetService<IViewEngine>();

}

With this code in place, your application actually runs with two view engines—the default
one plus the Spark engine. The default view engine always takes precedence over Spark.
You can, of course, remove the default view engine and run your application with just the
Spark engine (or whatever else you intend to use). Here’s what you need to do in this case:

protected void Application_Start(object sender, EventArgs e)

{

 // Your own default stuff here

 RegisterRoutes(RouteTable.Routes);

.
 .
 .

 // Remove the default view engine

 ViewEngines.Engines.Clear();

 // Register the Spark view engine (as long as the Spark

 // assemblies are properly referenced)

 SparkEngineStarter.RegisterViewEngine();

 // You can re-add the default engine here after the Spark engine

 // to (try to) give it a lower priority. As we'll see later, this is not what

 // will happen in all cases, though.

 ViewEngines.Engines.Add(new WebFormViewEngine());

}

 Chapter 11 Customizing ASP.NET MVC 523

When multiple engines are registered, normally they are resolved in the order of registration.
However, there’s a caveat to consider. The search through the list of registered view engines
is conducted by the FindView method on ViewEngineCollection using the following algorithm:

ViewEngineResult result;

// Check whether the view engine has a cached view that matches the name

foreach (IViewEngine engine in ViewEngines.Engines)

{

 if (engine != null)

 {

 // Final Boolean parameter indicates use-cache (if any)

 result = engine.FindView(controllerContext, viewName, masterName, true);

 if (result.View != null)

.
 .
 .

;

 }

}

// Check whether the view engine can produce a view that matches the name

foreach (IViewEngine engine in ViewEngines.Engines)

{

 if (engine != null)

 {

 // Final Boolean parameter indicates NOT to use the cache

 result = engine.FindView(controllerContext, viewName, masterName, false);

 if (result.View != null)

.
 .
 .

;

 }

}

As you can see, the view engine first gets an inquiry to see if it has a cached view with
a matching name. At least with the default configuration, Spark doesn’t cache views. Because
the default engine always caches views, conversely, it is picked up even if you added it to the
list after the Spark engine.

Note The default view engine and Spark can be used at the same time, which would make
the transition gradual. Ultimately, you can begin by simply changing the extension of an .aspx
 template file to .spark and removing the top @ directives. You can even have Spark views
 rendered as partial views in the Web Forms engine.

Overview of the Spark View Engine
To use the Spark view engine, you start by referencing a couple of assemblies: Spark and
Spark.Web.Mvc. Next, you register the engine with ASP.NET MVC in global.asax and proceed
with the definition of the templates.

Obviously, Spark supports many levels of configuration and the precompilation of views. For
more information, refer to http://sparkviewengine.com/documentation.

524 Part III Programming Features

The big difference between Spark and the Web Forms engines is in the syntax. Spark was
designed around the idea of having HTML (or a tag-based, HTML-like syntax) all the way
through. You won’t have code blocks in Spark, and there’s no mix of code and markup
 whatsoever. HTML markup dominates the flow, and the code just fits into it smoothly.

Spark still supplies constructs that match the master pages and user controls that you find in
the Web Forms engine. Spark extends the classic HTML syntax with a bunch of new tags to
address specific needs, such as linking to the view-model object, executing a test or a loop,
or importing a pregenerated chunk of HTML. Here’s a taste of the Spark syntax right from
the site:

<var versions="new [] {'Preview', 'Beta', 'RC', 'RTM'}"/>

<for each="var productVersion in versions">

 <test if="productVersion == 'RTM'">

 <p>Enjoy the product!</p>

 <else/>

 <p>${productVersion} is here. Just wait for RTM...

 </test>

</for>

The snippet shows off a few specific tags, such as var, for, test, and else. The var tag defines
a variable named versions and assigns it a few fixed values. Next, the for tag loops over the
array, checks the value, and emits markup accordingly. The ${ . . . } expression emits the
value of an expression that has a return value. The output you get might or might not be
encoded automatically, depending on the current settings. If you have the following in the
 configuration file, the result of any ${...} expression will be silently encoded:

<spark>

.
 .
 .

 <pages automaticEncoding="true" />

<spark>

However, note that you can always force unescaped strings by using the !{ . . . } macro
 instead. A nice feature of Spark is that null exceptions are caught and swallowed
 automatically if only you use the following syntax:

$!{ expression }

In this case, any null values and NullReferenceException that result from the expression are
ignored and produce no output at all.

Defining a Layout with Spark
Spark is a view engine that can be successfully used with both ASP.NET MVC and Castle
MonoRail—two ASP.NET frameworks that follow the same pattern. The core rendering
 engine is then customized by a second assembly that adapts the engine to the needs of the
host framework and plugs it in.

 Chapter 11 Customizing ASP.NET MVC 525

When used with ASP.NET MVC, Spark requires you to define view files and place them in the
same folders as the default view engine. View files are retrieved and invoked by name. Let’s
briefly consider the following action method:

public ActionResult Index()

{

 return View();

}

It invokes the view named Index on the current controller. When the default engine is
 employed, the view file is expected to be index.aspx and it’s expected to be located in the
controller-specific folder under Views or in the Shared folder. If you switch to the Spark
engine, the view file the framework will look for is index.spark. The locations where it is
searched are the same as with the default engine.

It is not uncommon that the template of a page requires a master layout or a master
page just to use the Web Forms expression. With Spark, you can define a master layout in
a number of ways. You typically choose to have a single application.spark file in the
Views/Shared folder when you use just one template for all your views. Alternately, you can
have a .spark file named after the controller. A controller-specific template takes precedence
over the application.spark file. Note also that if you specifically indicate a particular .spark file
as the master name in the call to View(), that will be used regardless of other settings you
might have in place. Here’s a sample application layout file:

<html>

.
 .
 .

 <body>

 <div id="main">

 <div id="content">

 <use content="MainContent" />

 </div>

 <div id="footer">

 <use content="FooterContent" />

 </div>

 </div>

 </body>

</html>

The use element indicates a placeholder for content generated by the template file.

Finally, you can have reusable blocks of markup in Spark similar to user controls in the Web
Forms view engine of ASP.NET MVC. All you do is create .spark files in the Views/Shared
folder and reference them in other templates using an element that matches the name. It
is key to note that the file name must be prefixed with an underscore. So suppose you have
a _Footer.spark file defined, as shown here:

<p>

 Courtesy of "Programming ASP.NET MVC 2" © Copyright 2010 Dino Esposito

</p>

526 Part III Programming Features

You can insert it into a master layout or a template, as shown here:

<div id="main">

 <div id="content">

 <use content="MainContent" />

 </div>

 <div id="footer">

 <Footer />

 </div>

</div>

Note that the tag is case-sensitive in the sense it has to match perfectly the case of the
.spark file name in the Shared folder.

Importing the View Model with Spark
The viewdata element in Spark is a declarative wrapper around the ViewData object of
ASP.NET MVC. Note that a similar object also exists in Castle MonoRail—the other MVC Web
framework that Spark works well with. You can use the viewdata element in your template file
in a variety of ways. Here’s the layout of the element first:

<viewdata property="type" />

You can have as many distinct properties as you like in a single element and as many
 viewdata elements as you want. The property attribute indicates the name of the property
you can use in your expressions to retrieve data from the ViewData object. The value of the
attribute, on the other hand, describes the type of the property. Here’s a simple example:

<viewdata Message="string" />

In this way, you are defining a strongly typed accessor for any string value in ViewData that
can be reached through the expression Message. This can be any value that the controller has
stored through the following expressions:

// Create an entry in the dictionary named Message and of type String

ViewData["Message"] = ...;

// ViewData.Model references an object with a Message property of type String

ViewData.Model.Message = ...;

If both expressions are used, the value in the dictionary is used. Internally, the viewdata
 element is resolved using the ViewData.Eval method, which attempts first to resolve through
the dictionary and then looks into what’s possibly referenced by the property Model.

Note that in your .spark templates, you can also freely use any of the following expressions:

ViewData["Message"]

ViewData.Model.Message

ViewData.Eval("Message")

 Chapter 11 Customizing ASP.NET MVC 527

In other words, using the viewdata element adds one more possibility and doesn’t limit you
in any way.

Let’s consider another example. In this case, the viewdata element is used to reference
a complex type, such as MyContainer:

namespace MyBook.Samples

{

 public class MyContainer

 {

 public string Message { get; set; }

 }

}

The controller stores an instance of MyContainer into the ViewData dictionary:

var myContainer = new MyContainer();

myContainer.Message = "...";

ViewData["MyModel"] = myContainer;

You retrieve this data via the viewdata element as follows:

<use namespace="MyBook.Samples" />

<viewdata MyModel="MyContainer" />

.
 .
 .

${MyModel.Message}

And finally, if your view-model object is stored in the Model property of the ViewData
 collection, here’s what you can do:

<use namespace="MyBook.Samples" />

<viewdata model="MyContainer" />

.
 .
 .

${Model.Message}

The case of property names in the viewdata element doesn’t matter. To finish off, here’s
a complete demo that renders a data-driven user interface. The view model is a collection of
Category object. Note the special [[type]] syntax used in the viewdata element for generics:

<content name="MainContent">

 <viewdata model="IEnumerable[[Category]]"/>

 <h2>Browse Products

 !{Html.ActionLink("[add]", "NewCategory")}

 </h2>

 <li each="var category in ViewData.Model"

 id="!{Html.AttributeEncode(category.CategoryName)}">

528 Part III Programming Features

 !{Html.ActionLink(category.CategoryName,

 "List",

 new { id=category.CategoryName })}

</content>

Figure 11-7 shows the output produced by this template.

FIGuRE 11-7 The output of the view as designed with Spark

Note What makes Spark so attractive to so many people in the relatively small (but growing)
ASP.NET MVC community? The reason is essentially this: Spark gives you a clean syntax
to describe the view you want. Your final result will probably be much cleaner and more
 readable than the tag soup you are likely to produce with the default Web Forms view engine.
This increases readability which, in turn, helps maintenance because Spark makes it inherently
easier to spot what’s wrong at some point. Spark makes it harder for you to produce a tag soup,
but a readable syntax with the default engine is definitely possible. The reality is that Spark
brings with it a new syntax and binds you to a community-driven project.

In my opinion, it couldn’t be farther from the truth that community-driven and open-source
projects are lesser software. However, I’ve seen too many customers who are just not willing to
use any software without “a clear vendor behind it” to yield to the sincere geek enthusiasm for
something that—like Spark—is inherently cool.

 Chapter 11 Customizing ASP.NET MVC 529

Ultimately, using Spark or sticking to the default view engine doesn’t generally make a big
 difference in the economy of a project. Although I won’t deny that Spark is really cool and
 effective, I won’t list it as one of the must-have features that could make your project a success.
This said, I welcome any improvement to the view syntax that Microsoft could deliver in the near
future. Compile-time checking, ordered mix-up of HTML and code, and optional declarative
components for when you need more abstraction—these are, in my opinion, the pillars of the
ideal ASP.NET MVC view engine.

HTML Helpers
Many developers go through the same experience when they approach ASP.NET MVC.
The initial enthusiasm for the technology and the attraction to the overall high quality of the
design are soon softened by the consideration that, when it comes to the view, you seem to
go 10 years back to the tag soup of old-fashioned ASP. Spark (as well as other engines such
as NVelocity) can certainly contribute to making a view template more readable and cleaner,
but it doesn’t change a basic fact: ASP.NET MVC today lacks a component model to give you
the level of productivity you can achieve in Web Forms through server controls.

ASP.NET MVC and a Component Model
ASP.NET MVC pushes simplicity and, as a result, it is designed to stay really close to the metal.
Because the URL of a Web application typically returns HTML, staying close to the metal
means staying close to the machinery that produces HTML and granting developers total
control over it. This is a good point and fulfills a real demand.

The point is: should the quest for simplicity and control preclude adding a more abstract
component model conceptually similar to server controls, but technically different? If we
could get to this, in my opinion, we would be more than halfway toward the unification of
the various ASP.NET frameworks (Web Forms, ASP.NET MVC, and also Dynamic Data).

You might recall from Chapter 1, “Goals of ASP.NET MVC and Motivation for Its
Development,” the success of Web Forms is largely due to the abstraction it provides over
the production of HTML and script code. This abstraction is mostly achieved through server
 controls. You can certainly use Web Forms server controls in ASP.NET MVC, but server
 controls follow their own paradigm, which is tightly integrated with the Page Controller
 pattern of Web Forms. A component model that is analogous to server controls just doesn’t
exist for ASP.NET MVC. This fact definitely cuts down to some extent the potential of the
framework and makes the choice between Web Forms and ASP.NET MVC more difficult (and,
in a way, pointless) for architects and project managers.

The fundamental question—should we use ASP.NET Web Forms or ASP.NET MVC—too
 often ends up being an endless and pointless religious discussion where all parties are just
pushing their own vision and screaming louder with the gathering force of their conviction.

530 Part III Programming Features

ASP.NET MVC is an excellent choice from the perspective of developers, but that doesn’t
 necessarily translate to a tangible benefit for the customer and the project. As a result, many
 developers—probably the largest share—stick to Web Forms and lack the great opportunity
to upgrade to an inherently superior platform. As of today, it looks like the classic egg vs.
chicken dilemma.

I envision a near future in which ASP.NET MVC shows off a set of declarative components
supported at least by the default view engine that could boost the productivity of the
 average developer, without requiring the developer to learn an entirely new model. It could
be a new family of server components that are not bound to postbacks and view state but
still offer a rich and declarative programming model.

Emitting Common HTML Elements
HTML helpers are the closest you get in ASP.NET MVC to the server controls of Web Forms.
As you saw in Chapter 5, an HTML helper is an extension method on the HtmlHelper class
that returns a common chunk of HTML markup.

At the core, there’s no difference between a server control and an HTML helper. Both just
take some input arguments and prepare some markup for the output stream. The difference
is in the programming interface they offer and in their internal behavior. An HTML helper
is a simple markup generator with no logic whatsoever; a server control has a much more
sophisticated life cycle, and rendering is only one of its responsibilities. In addition, an HTML
helper offers only an imperative syntax, whereas a server control is mostly used declaratively.
You won’t stray too far from the truth by saying that an HTML helper is a very simple server
control.

As the name suggests, an HTML helper helps you when it comes to producing a common
(and reusable) piece of HTML. ASP.NET MVC supplies a number of helpers to help you with
many of the basic HTML elements. In ASP.NET MVC 2, you won’t have helpers for submit
 buttons, even though such helpers exist in the MVC Futures library. Here’s how to create one:

public static class ButtonHelpers

{

 public static MvcHtmlString SubmitButton(this HtmlHelper helper,

 string name, string caption)

 {

 return SubmitButton(helper, name, caption, null);

 }

 public static MvcHtmlString SubmitButton(this HtmlHelper helper,

 string name, string caption, object htmlAttributes)

 {

 // Convert from object to dictionary

 var dict = (IDictionary<string, object>) new RouteValueDictionary(htmlAttributes);

 // Build the button

 var submit = new TagBuilder("input");

 submit.MergeAttribute("type", "submit");

 submit.MergeAttribute("value", caption);

 submit.MergeAttribute("name", name, true);

 Chapter 11 Customizing ASP.NET MVC 531

 return MvcHtmlString.Create(

 submit.ToString(TagRenderMode.SelfClosing));

 }

}

As mentioned, an HTML helper is an extension method for the HtmlHelper class in System.
Web.Mvc. You are entirely responsible for the programming interface of the method. It is
a good practice to offer several overloads and make the helper return an MvcHtmlString
 object instead of a plain string. (In ASP.NET MVC 2, an MvcHtmlString is a special wrapper for
a string that indicates the string should not be encoded further.)

Overloads of an HTML helper typically list a growing number of parameters, including
a dictionary of cross-cutting HTML attributes such as class or perhaps disabled. The logic of
the helper is entirely focused on producing HTML. You can manually accumulate markup in
a text buffer, or you can use the specialized TagBuilder class that ASP.NET MVC gently offers.
The MergeAttribute method attaches to the in-memory structure created by TagBuilder
 information about an attribute to emit and its value. MergeAttribute comes in various forms:

public void MergeAttribute(string key, string value);

public void MergeAttribute(string key, string value, bool replaceExisting);

public void MergeAttributes<TKey, TValue>(

 IDictionary<TKey, TValue> attributes);

public void MergeAttributes<TKey, TValue>(

 IDictionary<TKey, TValue> attributes, bool replaceExisting);

Other useful methods on the TagBuilder class are SetInnerText, GenerateId, and AddCssClass.
Finally, the class also supplies a public InnerHtml property if you just need to get or set the
inner HTML explicitly.

The ToString method of TagBuilder can optionally render the closing or self-closing
tag as well as the initial tag. A bit surprisingly, the TagBuilder doesn’t have a public
ToMvcHtmlString method. The method exists, but it is marked as internal. For this reason,
you resort to MvcHtmlString.Create when it comes to emitting the markup.

Emitting Common HTML Blocks
You can use HTML helpers not just to emit functional elements such as buttons or
 drop-down lists, but also to emit meta and link tags, include tags, script code, and so forth.

Some developers also argue that whenever you feel the need to have an if in your rendering
logic, you have to create an HTML helper. Frankly, the suggestion is not far-fetched, but it
probably doesn’t address the real problem. Having a lot of highly specialized HTML helpers
will make the whole view syntax cleaner and HTML-like because it would save you from too
many <% . . . %> code blocks, especially code blocks used to create a control flow logic. If
you strongly agree with this vision, probably you’d be better off dropping the default engine
to embrace Spark. With Spark, you can still use HTML helpers, but at least you save yourself
from creating many generic helpers that are already built into the Spark engine.

532 Part III Programming Features

Let’s see how to create an HTML helper to emit some meta information, such as the Web site
icon—the favicon:

public static class FavIconHelpers

{

 public static MvcHtmlString Favicon(this HtmlHelper helper)

 {

 return Favicon(helper, "", "", false);

 }

 public static MvcHtmlString Favicon(this HtmlHelper helper, string iconPath)

 {

 return Favicon(helper, iconPath, "", false);

 }

 public static MvcHtmlString Favicon(this HtmlHelper helper,

 string iconPath, bool animated)

 {

 return Favicon(helper, iconPath, "", animated);

 }

 public static MvcHtmlString Favicon(this HtmlHelper helper,

 string iconPath, string iconName, bool animated)

 {

 var urlHelper = new UrlHelper(helper.ViewContext.RequestContext);

 var builder = new StringBuilder();

 // Fix the icon path

 string path = iconPath;

 if (!String.IsNullOrEmpty(path))

 {

 path = urlHelper.Content(iconPath);

 if (!path.EndsWith("/"))

 path += "/";

 }

 // Fix the icon name

 string icon = "favicon.ico";

 if (!String.IsNullOrEmpty(iconName))

 icon = iconName;

 icon = path + icon;

 // Add the favicon tag

 builder.AppendFormat("<link rel=\"shortcut icon\"

 href=\"{0}\"

 type=\"image/x-icon\" />\n", icon);

 // In this case, an animated favicon was requested

 if (animated)

 {

 string animatedIcon = "animated_favicon.gif";

 animatedIcon = path + animatedIcon;

 builder.AppendFormat("<link rel=\"icon\"

 type=\"image/gif\"

 href=\"{0}\" />\n", animatedIcon);

 }

 return MvcHtmlString.Create(builder.ToString());

 }

}

 Chapter 11 Customizing ASP.NET MVC 533

The FavIconHelpers class has a few overloads to simplify the usage from within views and
master pages. It accepts the path and icon name as well as a Boolean argument for when
an animated icon is required. The code works to emit a chunk of HTML, as shown here:

<link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />

The favicon usually resides in the home directory, but nothing prevents you from moving
it elsewhere. Likewise, the name of the icon defaults to favicon.ico, but it can be changed
at will. If anything is changed, it will then be reflected by the href attribute. Some browsers
 (including the latest versions of Opera and Firefox, but noticeably not Internet Explorer 8)
support animated favicons. You get that by simply adding the following:

<link rel="icon" href="animated_favicon.gif" type="image/gif" />

Of course, the content of the href attribute can be changed at will. The type of the file,
though, has to be GIF and the actual content must be an animated GIF. For simplicity,
the FavIconHelpers class shown here doesn’t let you choose a name for the animated
icon but defaults to animated_favicon.gif. You use the following code to emit a favicon in
a master page:

<head runat="server">

 <%= Html.Favicon("/images", true) %>

 <title><asp:ContentPlaceHolder ID="TitleContent" runat="server" /></title>

.
 .
 .

</head>

Figure 11-8 shows an animated favicon in Firefox.

FIGuRE 11-8 An animated favicon iterates for a few seconds and then remains still.

534 Part III Programming Features

Emitting Common Blocks of jQuery UI Script
HTML helpers can also be used to speed up the creation of boilerplate script code.
An excellent example is the use of the jQuery UI library. (See http://jqueryui.com.) The library
 extends the popular jquery library with nice user interface features such as effects, transitions,
animations and, more interesting in this context, rich widgets such as tabstrips, accordions,
dialog boxes, and a calendar component.

All of these widgets require a fixed HTML layout in the page and then some ad hoc script
code to perform dynamic transformation and styling. As an example, consider the following
rather scanty markup:

<h2> Some static content </h2>

<hr />

<div id="accCustomers">

 <h3> ALFKI </h3>

 <div>

 Customer ALFKI

 </div>

 <h3>BOTTM</h3>

 <div>

 Customer BOTTM

 </div>

 <h3>CACTU</h3>

 <div>

 Customer CACTU

 </div>

</div>

After it is processed by the jQuery accordion function, it shows up as illustrated in Figure 11-9.

To set up a jQuery UI widget, you need some ad hoc script code that can be placed in the
script block you run upon loading. Most commonly, the code goes within the ready function
of jQuery or in an analogous handler if you’re using, say, ASP.NET AJAX:

<script type="text/javascript">

 $(document).ready(

 function() {

.
 .
 .

 }

);

</script>

The script code you need might be as simple as a parameterless function call or it might
be more sophisticated, depending on the parameters you need to pass and the level of
 customization you want to achieve. HTML helpers can simplify the declaration of your intents
as far as jQuery UI widgets are concerned. As an example, let’s see how to define an HTML
helper to attach a date picker to a plain input tag like the one shown here:

<input type="text" id="FavoriteDay" />

 Chapter 11 Customizing ASP.NET MVC 535

FIGuRE 11-9 An accordion created with jQuery UI

To attach a date picker, you need the following script code:

$("#FavoriteDay").datepicker();

This code will get more complex the more features you want to use. Here’s a less trivial
example:

$("#FavoriteDay").datepicker(

 {

 dateFormat: 'yy-mm-dd',

 numberOfMonths: 3,

 showCurrentAtPos: 1,

 changeMonth: true,

 showOn: 'both',

 showOtherMonths: true,

 beforeShowDay: function(date) {

 if (date.getMonth() == 1 && (date.getDate() >5 && date.getDate() <10))

 return [false, 'selected-day'];

 return [true, 'selected-day a'];

 },

 buttonText: 'Choose'

 }

);

536 Part III Programming Features

Using an HTML helper, you can hide most of these details behind a simpler syntax, like the
following:

<script type="text/javascript">

 $(document).ready(function() {

 <%= Html.jQueryUI().Calendar().Setup("FavoriteDay", "dd MM yy", true) %>

 });

</script>

The result of the preceding code is a date picker that shows the days of the other months
(preceding and successive) and defaults to the day Month year format for selection. Let’s dig
out the source code of the HTML helper:

public class jquiContainer

{

.
 .
 .

.

}

public class jquiCalendarHelpers

{

.
 .
 .

.

}

public static class MyHelpers

{

 public static jquiContainer jQueryUI(this HtmlHelper helper)

 {

 return new jquiContainer();

 }

 public static jquiCalendarHelpers Calendar(this jquiContainer helper)

 {

 return new jquiCalendarHelpers();

 }

 public static MvcHtmlString Setup(this jquiCalendarHelpers helper, string id)

 {

 var builder = new StringBuilder();

 builder.AppendFormat("$(\"#{0}\").datepicker();", id);

 return MvcHtmlString.Create(builder.ToString());

 }

 public static MvcHtmlString Setup(this jquiCalendarHelpers helper,

 string id, string dateFormat, bool showOtherMonths)

 {

 var builder = new StringBuilder();

 var config = BuildConfig(dateFormat, showOtherMonths);

 builder.AppendFormat("$(\"#{0}\").datepicker({1}{2}{3});", id, "{", config, "}");

 return MvcHtmlString.Create(builder.ToString());

 }

 private static string BuildConfig(string dateFormat, bool showOtherMonths)

 {

 var builder = new StringBuilder();

 Chapter 11 Customizing ASP.NET MVC 537

 builder.AppendFormat("dateFormat:\"{0}\",showOtherMonths:{1}",

 dateFormat, showOtherMonths.ToString().ToLower());

 return builder.ToString();

 }

}

The helper is a bit more structured than in other examples. The HtmlHelper class is not
 extended directly by the method you would use in your code. Instead, a jQueryUI extension
method is defined that returns a custom container object. The container, in turn, is extended
with one container method for each category of widget. In the example, we have only one:
the Calendar container, which represents the datepicker widget. Finally, the Calendar method
is extended with the Setup method where you define the script you want. The Setup helper
method on the Calendar container manages to emit the right script to customize the date
picker the way you want. (See Figure 11-10.)

FIGuRE 11-10 The jQuery UI date-picker widget configured using an HTML helper

Note If you find the default set of HTML helpers in ASP.NET MVC 2 a bit limiting, you might
want to look at the ASP.NET MVC Futures assembly or, better yet, to its source code. You get
ASP.NET MVC 2 Futures with the source code of the ASP.NET MVC 2 framework from the official
site. Examples of HTML helpers in the Futures library include facilities for linking script files, style
sheets, and images, and also buttons, radio-button lists, and mail-to links.

538 Part III Programming Features

Summary
My gut feeling is that ASP.NET MVC was not designed to be as extensible and customizable
as it turned out to be. However, I do believe it was simply written, adhering to sane design
principles and accommodating current best practices. The net result is a framework that is
highly extensible and easy to test. The two things go hand in hand because in order to test
things effectively you need to isolate and abstract all dependencies. And once you have
achieved this, you also have the tools to unplug a component and roll your own.

In ASP.NET MVC, you can take control over the execution of the action and intervene before
and/or after the request has been processed. Likewise, you can gain control over nearly all
aspects of the process that emits the response for the client browser. In this final chapter of
the book, I mostly focused on customizing controllers and views. In past chapters, however,
I touched on routes and custom routes, validation and custom validators, and model binders
and custom model binders.

Even though nearly all aspects of ASP.NET MVC are customizable, you don’t want to rewrite
all of them all the time. The aspects of customization discussed in this chapter are those I feel
are more frequently customized and, more importantly, those that, if properly customized,
deliver the greatest benefits.

 539

Appendix

ReSharper and the Power of Tools
Pleasure in the job puts perfection in the work.

—Aristotle

Do you remember what it meant dealing with Web applications back in the ‘90s? Very much
of it was a manual process. If you wanted a table, you had to render it out yourself. If you
needed forms, you had to type in each HTML element manually. And it was just ordinary
business at the time. When ASP.NET MVC came along in late 2007 and proposed a similar
model for arranging the response to a request, well, to many people it was like déjà-vu—
an unpleasant and bitter déjà-vu.

In fact, during initial talks and workshops I gave on ASP.NET MVC, there was some negativity
in the air. After all, we were moving away from the productivity that frameworks such as Web
Forms guaranteed. I could see the benefit of testability and cleaner design coming, but I was
unable to balance those benefits with the quirkiness of manual view rendering. However, as
newer builds of the ASP.NET MVC framework shipped, this view I had of ASP.NET MVC faded,
and it largely disappeared with the release of version 1 (and now version 2).

The main reason behind this shift in my perception of the technology was because of the
helpers and tooling that started shipping out of the box. Scaffolding, T4 support, and
an extensive offering of HTML helpers have made a world of difference when developing
in ASP.NET MVC. The tooling around ASP.NET MVC is what will make it or break it in terms
of productivity. I often refer to the role of tools in development as a form of sustainable
 development. Think about it, and let me know if I completely missed the point here.

In this appendix, I’m going to take you for a tour around some ASP.NET MVC–specific
 capabilities of ReSharper (R# for short). R# is a popular plug-in for Microsoft Visual Studio
developed by JetBrains. In the latest version—version 5.0—R# offers first-class support
for the ASP.NET MVC framework. In the rest of the appendix, I’ll go through some of these
 features to show how they can make your everyday development efforts more productive
and pleasant.

For more information about R# 5.0, pay a visit to http://www.jetbrains.com/resharper.

IntelliSense Extensions
Microsoft IntelliSense has undoubtedly provided .NET developers with a great productivity
boost. Not only has it made typing more efficient, but it also has enhanced accuracy.
IntelliSense helps us by preventing spelling mistakes while invoking method names and by

540 Appendix

giving us information about parameters, quick documentation, and so forth. Combine
IntelliSense with a strongly typed language, and you can have instant feedback on the
 syntactical accuracy of your code.

Choose the Right View Name with IntelliSense Tips
ASP.NET MVC relies heavily on strings. Many of the HTML helpers use strings to denote
 properties, actions, controllers, or views, among other things. Take for instance the action
method shown here:

public ActionResult About()

{

 return View("Company");

}

If the view subsequent to a method takes the same name of the method, you can
save parameters in the call to the View method. More often than not, however, a view
with a different name is required. This is not a problem per se; however, suppose for
a moment that you typed the string Company incorrectly. ASP.NET MVC will detect
your error only at run time and serve you a nasty invalid operation exception. This is not
just counterproductive, but it could also lead to quite embarrassing situations during
deployment!

In similar situations, R# helps by providing IntelliSense tips when it comes to view names.
To access this functionality, just press Ctrl+Space while writing the call to the View method,
as shown in Figure A-1.

FIGuRE A-1 R# helps you to pick up the right view name.

R# explores the current project and discovers the possible view names you might want to
call at that point. The list of available views is easy to prepare: all files under
Views/Shared and Views/Xxx, where Xxx is the current controller name. Note also that
R# provides IntelliSense from inside a string—a not-so-obvious thing.

A clear benefit deriving from this feature is that if you reference a view that does not
 exist, you receive immediate visual feedback, as shown in Figure A-2. As such, you have
 substantially reduced your chances of deploying an application with a missing view.

 ReSharper and the Power of Tools 541

FIGuRE A-2 R# detects that a missing view is being used.

Views with tree structures such as Views/Home/Private/Login are also supported. Further
on in this appendix, you will see some more possibilities that R# offers in this regard.

Action Links and URLs
Action links have always been a painful feature to use in ASP.NET MVC because they force
developers to use plain strings:

<%= Html.ActionLink("Home", "Index", "Home") %>

Similar to what happens when you pass an incorrect view name, mistyped strings resulting
in broken links are not discovered until run time. One solution to this problem has been to
use the expression-based ActionLink helpers that ship with the ASP.NET MVC Futures library.
They make use of lambda expressions to provide strongly typed references to actions. The
markup just shown could be written as it appears here:

<%= Html.ActionLink<HomeController>(actionName => actionName.Index(), "Home") %>

You still have a string, but that string now is only the text for the hyperlink. Note that
ASP.NET MVC Futures is still a Microsoft library, but the features there are not considered to
be ready for prime time yet. If you feel confident with a given feature, however, you are free
to use the Futures library. Expression-based action links provide some good compile-time
benefits but are known to have some impact on performance because of the heavy usage
of expression trees.

A tool such as R# can help you write the correct code at the right time without any
 performance hit. Thanks to its firsthand knowledge of the ASP.NET MVC framework, R# can
intelligently pop up a list of actions and controllers when you are editing an action link.
(See Figure A-3.)

FIGuRE A-3 R# gives you suggestions about controller and action names to use.

542 Appendix

User Controls
R# provides the same support you’ve seen for views and action links for user controls and the
corresponding RenderPartial method. Figure A-4 shows an example of it.

FIGuRE A-4 R# gives you suggestions about user controls.

More importantly, R# not only displays the list of user controls, but also includes any view
that qualifies. The screen shot in Figure A-4 was taken while editing one of the master pages.
Intelligently, R# lists only views and user controls located in the Views/Shared folder. If you
try to do the same from inside the view of a specific controller, R# instead provides the list of
views and user controls related to that controller, plus all those located in the Views/Shared
folder.

Static Analysis to Detect Missing Views and Actions
In addition to providing editing facilities, R# can also perform a static analysis of your
 solution to detect any compile-time errors. The static analysis runs in the background and
informs you promptly about what’s wrong so that you can save yourself some full compile
steps.

You can configure R# to determine what should be considered an error, a warning, or simply
a hint. By default, R# reports as errors whatever would lead the compiler to fail. However,
as you’ve seen, a missing view or an invalid action name will still produce an error—though
probably not a compile error. When properly instructed, R# can detect these potential
errors too.

The static analysis is a cross-project feature and detects errors in any files within the solution.
You are notified of pending errors in your solution by an icon placed at the bottom-right
 corner of Visual Studio, as shown in Figure A-5.

FIGuRE A-5 You have pending errors in your solution.

 ReSharper and the Power of Tools 543

By clicking on the icon, you can navigate to the errors and solve them without hitting the
compiler and with no unpleasant and time-consuming run-time experience.

Coding Assistants
As you saw in Chapter 10, “Testability and Unit Testing,” ASP.NET MVC is a framework
open to test-driven development (TDD). In a classic TDD cycle, you first create a test (more
 precisely, you write a specification to define the expected behavior of the class) and then
proceed to implement the class. When using TDD, you frequently write code that references
other code that doesn’t exist yet. Visual Studio 2010 includes a number of enhancements
to better support TDD scenarios, but it still lacks quite a few features that would make the
 overall experience significantly richer.

R# works to minimize the hassle associated with TDD by providing a collection of coding
 assistants. Coding assistants help particularly in TDD scenarios, but they are helpful
 regardless of the methodology in use. Let’s find out more.

Creating Views by Usage
In Figure A-2, R# signals that a missing view is being used. A view might be missing for
 essentially two reasons: the name was mistyped or the view has not been created yet. You
can create a new view in a number of ways. You can, for example, right-click in the solution
and choose the Add View option from the Visual Studio context menu. Or you can just
 navigate to the appropriate location and create a new file.

With R#, you can create a view by usage. When R# detects an error, it provides a list of
 possible actions you can take at that point. When R# detects a missing view, it offers to
 create a new view. The list of actions is associated with the familiar red light bulb that
 appears next to the left margin. (See Figure A-6.)

FIGuRE A-6 R# suggests possible actions to take at this point.

After pressing the Enter key, you are prompted with the dialog box shown in Figure A-7,
which is ready to collect information about the new view to be created. By default, the new
view takes the name of the view referenced in code.

544 Appendix

FIGuRE A-7 R# offers to create a new view.

After you click OK, the view is created and placed in the appropriate folder.

Creating Action Links by Usage
Similar to its helpfulness with creating views, R# offers a usage menu when you’re trying to
create an action link and use incorrect strings. (See Figure A-8.)

FIGuRE A-8 R# offers a quick-fix menu for broken action links.

The newly created controller contains code like that shown here:

public CustomerController : Controller

{

 public ActionResult Details()

 {

 throw new NotImplementedException();

 }

}

 ReSharper and the Power of Tools 545

Surround with Tags
When writing code, you often encounter the need to wrap some blocks inside a statement,
be it a try/catch, using, or if statement. This also can occur when you’re working with ASP.NET
markup. In this case, you likely want the existing markup to go inside a div or span or maybe
in a foreach code block. R# 5.0 adds this new capability.

By selecting one or more lines of markup and pressing Ctrl+E,U (Ctrl+Alt+J if you’re using the
IntelliJ keyboard layout), you are prompted with a menu like the one shown in Figure A-9.

FIGuRE A-9 R# is ready to surround the highlighted markup with your selection.

The first option is surrounding with a tag. By selecting it, you get another menu that allows
you to choose the desired tag to wrap the code in.

Navigation
As solutions grow in size, it becomes harder to locate items. We tend to spend quite a bit of
time with Solution Explorer searching for a specific class or file. This is a clear waste of time.
R# adds many features when it comes to code navigation, and in this section you will see
how it can help you when you’re working with ASP.NET MVC solutions.

Controller and View Navigation
Both Visual Studio 2008 and Visual Studio 2010 offer to go from an action to the
 corresponding view and vice versa. However, navigation is limited to actions and views, and
it doesn’t work when the view name doesn’t match the action method name.

R# provides a more generic way to navigate between controllers and views by means of its
Type And File Navigation feature. By using the Go To Type feature, which is accessible by
pressing Ctrl+T (or Ctrl+N in the IntelliJ scheme), you can quickly jump to a type by either
entering a series of matching characters or typing the uppercase characters if the name is
in CamelCase. For instance, to locate the CustomerController type, you can just type CC,
as shown in Figure A-10.

Boykma
Text Box
Download from Wow! ebook <www.wowebook.com>

546 Appendix

FIGuRE A-10 The Go To Type navigation feature of R#

There is also a Go To File feature, through which you can locate a specific view by pressing
Ctrl+Shift+T and entering the name of a view, as shown in Figure A-11.

FIGuRE A-11 The Go To File navigation feature of R#

R# 5.0 also adds an ASP.NET MVC–specific feature known as View Navigation. Figure A-12
shows two distinct action methods. The first returns a view with the default name, whereas
the second uses a custom name. Notice also that when the default view name is used,
the View method is underlined; where a custom view name is used, instead, the string is
 underlined. This indicates where to click to navigate to the actual view template file.

FIGuRE A-12 The View Navigation feature of R#

 ReSharper and the Power of Tools 547

Finally, with R# 5.0 and permission from Microsoft to access the source code of the
 framework for browsing, the Go To Declaration feature has been extended to also reach
types defined outside of the project, including the ASP.NET MVC native classes. This comes
in very handy when you become willing to delve into the inner workings of ASP.NET MVC.

Similarly, R# allows navigating from the controller and view names within the syntax of
an action link. Both strings appear underlined, meaning that by holding down the Ctrl key
and pressing the left mouse button, you are taken directly to the required location.

Locating Symbols
The Go To Member feature has been extended in R# 5.0 to include support for Web files. So
you can easily locate a specific element in a view file, as demonstrated in Figure A-13.

FIGuRE A-13 The Go To Member feature of R#

Navigating Inside Master and Content Pages
In ASP.NET, you use master and content pages to give a homogenous look and feel to views.
A master page defines placeholders for which a content page provides actual content.
Master and content files are related but distinct, with no easy way to navigate inside of them.
R# fills the gap through the Navigate To menu invoked by pressing Alt+[. (See Figure A-14.)

FIGuRE A-14 The Navigate To menu for master/content navigation

548 Appendix

Of particular interest is the Related Files menu item. It lists all files that are related to the
 current view—whether they are script files, style sheets, user controls, or even controllers.
Here’s a view of the menu:

FIGuRE A-15 Navigating related files

Refactoring for ASP.NET MVC
Refactoring has always been the core business of R#. With 40 solution-wide automatic
 refactorings, plus time-saving features such as safe deletion and moving of types and
files, R# is the de facto standard for cleaning up .NET code. Covering the many features of
R# related to refactoring would take a chapter of its own. So let’s just have a quick look at
items in the refactoring menu specific to ASP.NET MVC.

Like it or not, ASP.NET MVC is dependent on strings. Renaming an action method, for
 example, is a critical action in ASP.NET MVC. Suppose you want to rename an action
named LogOn to LogIn. If you do it via R#, you are prompted with the dialog box shown in
Figure A-16.

FIGuRE A-16 Renaming an action method

Just finding and renaming all occurrences of the string is not enough in ASP.MVC if the string
is actually the name of an action method. When the method to rename is an ASP.NET MVC
action method, R# will in fact also rename the view with the same name (if any), making sure
that your change won’t originate a 404 exception at run time. In addition, R# looks for any

 ReSharper and the Power of Tools 549

places where the action method is used in links and renames that too. This behavior is the
result of the combined effect of selecting the first two check boxes you see in Figure A-16.

When, instead, you rename a view, R# ensures that no action methods that invoke the view
are broken.

Conclusion
Web Forms was successful 10 years ago because it offered a thick abstraction layer over
the actual mechanics of the Web and HTTP. Today, ASP.NET MVC is a new framework that
 answers the growing demand for control over HTML, JavaScript, cascading style sheets (CSS),
and the like.

Thick abstraction and closeness-to-the-metal are opposite concepts.

The thick abstraction of Web Forms boosts the productivity of developers; the closeness-to-
the-metal that characterizes ASP.NET MVC, instead, maximizes the control that developers
can exercise over the markup. More control, however, means more work and at a lower level
of abstraction.

How does this improve productivity, then?

One way is to increase the dose of Convention-over-Configuration in the framework so
that many aspects of your code work automatically, in a given way, and without requiring
 additional effort on your part. Another way is to leverage smart tools like R#.

If you intend to use ASP.NET MVC in your next project, I definitely recommend you
 consider R# as well. Visual Studio 2010 comes with a lot of improvements over previous
 versions, especially in the area of refactoring, IntelliSense extensions, coding assistance,
and navigation. Although this is much better than the little bit offered in Visual Studio 2008,
made-to-measure tools such as R# offer a ton of extra features. It won’t take you more than
a week to become addicted to a tool like R#.

ASP.NET MVC has you working at a low level of abstraction. R# raises the abstraction level
at which you work, reduces the amount of time wasted searching for and fixing bugs,
and promotes better code and effective techniques. And, most importantly, you end up
 writing much better code through simple mechanical operations.

 551

Index

Symbols and Numbers
$ expressions, 250–51
$AppSettings, 250
$ConnectionStrings, 250
$Resources, 250–51
*.mvc requests, 70
.aspx extension, HTTP handlers, 55–57
.svc service endpoint file, 390
.tt text file, 291
@WebHandler, 54

A
Abstract classes, 78–79, 288–90
Accept header, requests, 419
AcceptAjax, 512
Acceptance tests, 199
Accept-Encoding, 502–03
AcceptVerbs, 164–67, 322–23, 348, 510–11
AccountModels.cs, 278
AcquireRequestState, 48, 58
Actions

action filters
ActionFilter, 157–58
ActionFilterAttribute, 497
Authorize, 513
customizing, dynamic loading, 505–08
HandleError attributes, 368
overview, 133–34
validation messages, 340
view data, 305

ActionExecuted, 190–95
ActionExecuting, 190–95
ActionMethodSelectorAttribute, 166–67, 511
ActionName, 165, 322–23, 509–10
ActionNameSelectorAttribute, 509–10
asynch actions, 190–95
attributes of, 156–67
child actions, 197–98
complex data types, 147–48
coordinator vs. controller, 174
input parameters, controllers, 145–47
invoking

ActionInvoker, 142–43, 488–89
customizing controller factory, 487–96
injecting custom action invoker, 398–99
views, action invoker, 217–18

life cycle, 151–55
links

ActionLink, 187, 243, 252, 421–23
AJAX, 425–27

creating, 544
IntelliSense extensions, 541
overloads, ActionLink, 187

mapping behavior to, 170–74
overview, methods, 148–49
rendering, 195–98
results

ActionResult, 96, 134, 153–55, 512–20
testing views, 457

selector attributes, 166–67
selectors, customizing, 509–12
static analysis of, 542–43
testing, action controllers, 454–58

Active Record pattern, 282, 287, 290–91
Active Server Pages (ASP), 4
ActiveX Template Library (ATL), 42
Ad hoc module, 92–93
AddCssClass, 531
AddGlobalData, 501
AddModelError, 333
AddModelStateErrors, 353
AJAX

AJAX 4 library, 411–13
AJAX library, 408
Ajax, ViewPage property, 230
Ajax.ActionLink, 271–72
AjaxContext, 428, 430
AjaxHelper class, 420–25
AjaxOptions, 426–27, 431
ASP.NET

direct scripting, 405–08
overview, 401–02
partial rendering, 402–05

ASP.NET MVC
adding AJAX capabilities, data grids, 269–72
AJAX calls, jQuery, 409
controller facade, 413–20
helpers, 420–28
JavaScript API, 408–13
partial rendering, 428–32
project templates, 108
TempData, 339

overview, 401
Alternate view engine, 521–23
Annotations, 296–99, 342–50
Antiforgery tokens, 156, 162–63, 253
Apache, 5, 38
App_GlobalResources, 251, 374–82
App_LocalResources, 374–82
AppDomains, 50
Application controllers, 102
Application pools, 38–40, 43

552 application.spark

application.spark, 525
Application_Start, 110, 396, 480
ApplicationContext, 181–83, 201–03, 205–08, 304
applicationHost.config, 50
ApplicationManager, 50
Applications, Enterprise-class, 101–02
AppRelativeCurrentExecutionFilePath, 362
AppSettings, 250
Architecture. See also ASP.NET MVC, infrastructure

applications, 171
control adapter, 19
IIS (Internet Information Services), 38–39
MVC pattern, 84
requests, ASP.NET MVC, 93
REST (REpresentational State Transfer), 28–29
view engine overview, 213–14

AreaRegistration.cs, 185
Areas, 184–87
Areas folder, 116–17
ArgumentException, 446
ArtOfTest, 275
ASHX resources, HTTP handlers, 53–54
ASP (Active Server Pages), 4
ASP.NET

development of, 4–8
limitations, 16–20
URL patterns and routing, 63–67

ASP.NET AJAX, 411–13. See also AJAX
ASP.NET Cache, mocking, 468–71
ASP.NET Dynamic Data, 258
ASP.NET MVC

anatomy of, 135
at a glance, 26–30
Controller filter interfaces, 144
ControllerBase, 137–39
controllers, mechanics of, 132–35
customizing

action filters, 496–508
action result processing, 512–14
action selectors, 509–12
ActionResults objects, 514–20
controller factory, overview, 477–78
default controller, extending, 480–87
HTML helpers, 529–37
invoking actions, 487–96
request processing, 478–80

HTTP handlers, 55–57
IController, 136
infrastructure

dependency injection, 382–99
error handling, 366–73
localization, 374–82
overview, 355
routing, 356–66

limitations, 89–90
Model2 and, 90–98
MVP pattern, 98–103
Presentation Model (MVVM), 103–07

presentation pattern, overview, 81–88
Project Template, overview, 107–13
request procesing, 75–79, 143
run-time shell, overview, 67–79
special folders, 113–18
view engines, 521–29
vs. Web Forms, 30–35, 215

ASP.NET Web Forms. See Web Forms model
ASPX files, 215, 229
ASPX markup, 14, 242–44
Async actions, 190–95
AsyncController, 188–95
Asynchronous AJAX calls, jQuery, 409–11
Asynchronous controllers, 187–95
Asynchronous handlers, 51
Asynchronous methods, testing, 473–75
Asynchronous postback, 403
AsyncManager, 195, 474
AsyncTimeout, 156–57, 194
ATL (ActiveX Template Library), 42
Attempted values, redisplaying, 340–41
Attribute-based validation, 330
AttributeEncode, 253
Attributes, adding custom, 349–50
Attributes, validators, 351–52
AuthenticateRequest, 47, 58
Authentication, 158–60, 162–63
Authorization

ASP.NET requests, 44–47
AuthorizationFilter, 497
authorize action filter, 513
authorize, attribute, 158–60
authorize, filter attribute, 156
AuthorizeRequest, 47, 58, 197–98

Autofac, 389
AutoMapper, 303
Automatic parameter resolution, 135, 147–48
Autonomous views (AV), 82

B
Backward-compatibility, 40
Base class, 78
BeginForm, 252, 255–56, 421
BeginRequest, 47, 58–59
BeginRouteForm, 252, 255–56, 421
BeginXXX, 189
Best practices, 8–9
Binary data, returning, 519–20
Bind attribute, 309–10
Binders, 142
Binding

complex data types, 147–48
data entry, 332
data posted to controller, 280
direct domain object binding, 285
drop down lists, 266
evolution of, 344–46

 Controllers 553

overview, 305–13
redisplaying attempted values, 340
URLs to action method, 146

Black-box components, 19
Breadcrumb navigation, 363
Browsers. See also Views

BrowserSpecific filter, 507–08
BrowserSpecificAttribute, 499
building response for, 213–15
direct scripting, 405–08
language and culture, 381
response generation, 512–13

BuildManager, 229
BuildUp method, 508
Business layer, action methods, 149–50
Business object modeling, 286–91
Business rules, saving, 328–30
Buttons, click events, 414

C
Caching

ASP.NET requests, 44–47
controller descriptor cache, 491–92
ControllerTypeCache, 482–83
output, partial views, 237
OutputCache, 47, 156, 161, 198
testing, 463
views, Getpath, 225

Calendar, 534–37
Canonical URL, 365
Cascading style sheets (CSS)

Control Adaptor Toolkit, 19
input-validation-error, 334–35
on Web pages, 4–5
sys-template, 412–13

Castle Active Record, 291
Castle MonoRail, 19–20, 92, 184
Castle Windsor, 389
Catch-all parameters, 67
Catch-all route, 371–72
CGI (Common Gateway Interface), 40
Change tracking, 295–96
CheckBox, 252, 472
CheckBoxFor, 252
Child actions, 139, 197–98
Child controls, storage of, 14
ChildActionMvcHandler, 197–98
ChildActionOnly, 156
ClassCleanup, 445
Classes

Active Record pattern, 290–91
source code for, 290

Classic mode, IIS pipeline. See also Microsoft Internet
Information Services (IIS)

.mvc requests, 70
application pools, 43
ASP.NET requests, 44–47

compatibility, 73
default.aspx file, 111
overview, 49

ClassIntialize, 445
Click events, 414
ClientDataTypeModelValidatorProvider, 346
Client-side events, AJAX action links, 427–28
CMS (Content Management Systems), 363
CoC (Convention-over-Configuration), 112–13, 135,

146, 309
Code blocks, views, 244–46
Code coverage, 452–54
Code-behind classes, 13–15, 110–12, 123–28
Coding assistants, ReSharper, 543–45
Common Gateway Interface (CGI), 40
Complex data types, 147–48
Compression, responses, 502–04
Configuration file

ASP.NET request processing, 50
default configuration, 68–70
HandleError, 160
HTTP handlers, 52, 54
HTTP modules, 57, 60–61
MVC project template, 107–13
saving business rules, 328–30
Unity container configuration, 393
ValidateRequest, 163–64

Configuration settings, views, 249–50
Confirm, AjaxOptions property, 426
ConnectionStrings, 250
Constraints, routing, 359–61
Constructors, 387
ContainerControlledLifetimeManager, 394
Content folder, 117
Content Management Systems (CMS), 363
Content method, 140
Content, missing, 371–72
ContentController, 205–08
Content-Encoding, 502
ContentResult, 140, 154–55, 514
ContentType, 519
Contraints property, Route class, 360
Control class, 245
Control, Design for Testability, 437
Controllers

action methods, overview, 145–50
areas, 184–87
as coordinator, 458–63
ASP.NET MVC, overview, 132–35
ASP.NET Web Forms, overview, 128–32
asynchronous, 187–95
attributes of, 156–67
client responses, ASP.NET MVC, 413–20
complex data types, action method, 147–48
Controller class

defined, 113
design of, 167–75
ExecuteCore, 338

554 Convention-over-Configuration (CoC)

ModelState, 332–34
naming, 183
overview, 139–43
signature, 176–77
TempDataProvider, 338
View method, 216–17

Controller descriptors, 489–90
Controller factory

custom controller factory, 396–97
default controller, extending, 480–87
DefaultControllerFactory, 183
IControllerFactory interface, 77
invoking actions, 487–96
overview, 477–78
request processing, ASP.NET MVC, 478–80

ControllerActionInvoker, 143, 217–18, 489
ControllerBase, 97, 137–43
ControllerBuilder, 479
ControllerContext, 137–39, 197–98
ControllerDescriptorCache, 491–92
ControllerMoniker, 181–83
controllers folder, 114–15
ControllerTypeCache, 482–83
ControllerViewSuffix, 302
data posted to, 279–80
drop-down lists, populating, 319
fat and skinny, 332
filter interfaces, 144
grouping, 184–87
IController, 136
implementation, MVC, 94–95
Model2, 92–93
MonoRail, 20
names, customizing, 483–84
navigation, 545–47
passing data to view, 151–55
render actions, 195–98
request execution, ASP.NET MVC, 143
return value, action method, 153–55
role of, 87–88, 123–28
testing and, 199–208, 454–58
views and, 212–15
writing, 167–83

Convention-over-Configuration (CoC), 112–13, 135,
146, 309

Cookies, 8, 135, 145–47, 162–63, 468
Coordinator controller, 458–63
Coupling, Design for Testability, 438–40, 442
CreateActionInvoker, 140, 488–89
CreateController, 480–86
CreatePartialView, 226, 228–29
CreateTempDataProvider, 140
CreateView, 223–24, 226, 228–29
Cross-Site Request Forgery (CSRF) attack, 162–63
Cross-Site Scripting (XSS) attack, 162–63
CSS (cascading style sheets)

Control Adaptor Toolkit, 19
input-validation-error, 334–35

on Web pages, 4–5
sys-template, 412–13

Culture, 379–81
CurrentCulture, 379–81
Custom Tool Namespace, 379
Customer

data annotations, 299
data posted to controller, 280
domain-specific entities, 282
passing data to view, 285–86
posting data, 284

CustomerMetaData, 299
customErrors, 160
Customization

action filters
action selectors, 509–12
dynamic loading, 505–08
gallery of, 496–504

action result processing, 512–14
ActionResults objects, 514–20
attributes, 349–52
code-behind class, 14
controller factory

default controller, extending, 480–87
invoking actions, 487–96
overview, 477–78
request processing, 478–80

HTML helpers, 529–37
model binders, 310–11
runtime environment, 68
URL extensions, 53
view engines, 521–29

CustomValidation, 297

D
Data

annotations, 257–58, 296–99, 344, 346
binary, returning, 519–20
complex types, 147–48
data entry

annotations and validators, 342–50
overview, 317
Select-Edit-Save (SES) pattern, 318–25
validation, client-side, 351–54
validation, server side, 326–42

DataAnnotationsModelMetadataProvider, 346
DataAnnotationsModelValidatorProvider, 346
DataContext, 150, 290
Data-driven tests, 447
DataErrorInfoModelValidatorProvider, 346
datagrids, 261–72
DataSets, 282
DataTokens, 357
DataType, 297, 344, 349
DataView, 411–13
in view, 280–81
linking data shared across views, 500–02

 Events and handlers 555

Data Access Layer (DAL), 150, 288
data, AjaxOptions property, 427
Database tables, 282
Date pickers, 534–36
DateTime, 259–60, 349
DDD (Domain-Driven Design), 290, 387
Decision coverage, 452
Declarative configuration, 393
Default view engine, 96
default.aspx file, 110–12
DefaultBinder, 344–46
DefaultControllerFactory, 77, 183, 479–84
DefaultLogger, 393
DefaultModelBinder, 147, 306–07, 311, 344–46
DefaultViewLocationCache, 225
DELETE, 256
Dependencies, managing, 180–83, 200, 397–98, 459–63
Dependency injection (DI)

Design for Testability, 440–41
injection mechanism, 177, 208, 386–87
IoC containers, 388–91
overview, 382–84
resolving dependencies, Unity, 392–93
service locator pattern, 384–86
testing, 387–88
Unity, 391–99

Dependency Inversion Principle (DIP), 383–86, 440
Deployment issues, 174
Design for Testability (DfT), 436–43
Design-by-contract, 147–48
DI (Dependency injection). See Dependency injection (DI)
Dictionaries

controller descriptor cache, 491–92
IDictionary, 97–98, 152–53
ModelBindingDictionary, 344–46
ModelStateDictionary, 142, 332–34
Parameters dictionary, 134–35, 141, 194, 474
routeValues, 187
TempData, 337–39
ViewData, 231–33, 370, 372
ViewDataDictionary, 151–53, 239–40, 243, 299–305

Dijkstra, Edsger W., 17
DIP (Dependency Inversion Principle), 383–86, 440
Direct domain object binding, 284–85
Direct scripting, AJAX, 405–08
Display, data annotation attribute, 344
Display, HTML helper, 258, 261
Display, metadata, 343–44
Display, validation attribute, 298
DisplayFor, 258
DisplayForModel, 258
Dispose events, 57–60
Dispose method, 140
DLL (dynamic-link library), 40
Domain entities, abstracting, 288–90
Domain Model pattern, 282–83, 287–90
Domain objects, 284–85
Domain-Driven Design (DDD), 290, 387

Domain-specific entities, 281–82
Don’t Repeat Yourself (DRY), 323
Drop-down lists, 318–20
DropDownList, 252, 264–65
DropDownListFor, 252
Duplicate content, 364
Duration parameter, 161
Dynamic expressions, views, 249–50
Dynamic keyword, 501–02
Dynamically generated markup, 8–9
DynamicControllerDescriptor, 492
Dynamic-link library (DLL), 40

E
Edit method, 164–65, 320–21
Edit view, 325
Editor, HTML helper, 258–61
EditorForModel, 347–49
EditorTemplates, 259
EditViaGet, 165
EditViaPost, 165
Embedded Resource, 378
EmptyResult, 154–55, 514
EnableClientValidation, 254, 351
Encode, HtmlHelper class, 254
EndForm, 252, 255–56
EndRequest, 47–48, 58–59
Enterprise Library, 293–96, 298, 327–30
Enterprise-class applications, 101–02
Entity Framework

abstracting domain entities, 288–90
data annotations, 258, 298–99
gateways, 150
persistence, 288
validation, 294–96

EntityObject, 295–96
EnumDataType, 297
Error controllers, 371–72
Error property, model binding, 345–46
Errors, events and handling. See also Events

and handlers
compatibility, 71
ErrorViewModel, 372
HTTP 301, 366
HTTP 302, 371
HTTP 404, 55–57, 67, 359, 361, 370
HttpApplication events, 58
IIS policies, skipping, 372–73
messages, rendering, 334–36
missing content, 371–72
program exceptions, 367–68
static analysis, 542–43

EvenNumber, 349–50
Events and handlers. See also Errors, events

and handling
ASP.NET partial rendering, 403
code visibility and control, 123–28

556 Exceptions

code-behind class, 14
HTTP module, 57–60
Init, 403
Load, 403
Page_Load, 111–12
request processing, 50
Web Forms controllers, 128–32

Exceptions
ActionResult, 155
ArgumentException, 446
ExceptionFilters, 368–69, 497
HandleError, 178
handling program exceptions,

367–68
NotSupported, 358
null reference, 340
object validation, 331–32
RulesException, 353

Exclude, BindAttribute class, 309–10
Executables, request handling, 40
Execute method, 138, 487–88
ExecuteCore, 138–40, 143, 338, 487–88
ExecuteRequestHandler, 48–50
ExecuteResult, 154, 218–20, 417–19, 519
ExternallyControlledLifetimeManager, 394

F
Factories, 24–25, 102, 387. See also Controllers,

Controller factory
Fake objects, 208, 449–51, 458–63
FakeCache, 470–71
FakeSession, 465
Fat controllers, 332
FavIconHelpers, 533
Feedback, users, 334–36
Fielding, Roy, 28
File method, 140
File Transfer Protocol (FTP), 37–44
FileContentResult, 154–55, 519–20
FileDownloadName, 519
FileExists, 226
FilePathResult, 154–55, 519
FileResult, 140, 155, 519
Files, requests for physical files, 66–67
FileStreamResult, 154–55, 519–20
Filters

action filters, 133–34, 305, 340, 368, 496–508
asynchronous actions, 194–95
attributes of, 156–64
Authorize action filter, 513
child actions, 198
Controller class interfaces, 144
exceptions, 369
FilterAttribute, 497
FilterInfo, 505
IExceptionFilter, 367
ISAPI filters, 41

route constraints, 359–61
ViewData content, 231–33
Win32 ISAPI, 49

FindAction, 492, 494
FindPartialView, 221, 223
FindView, 218–21, 223, 523
Finished event, 474
FireBug, 515
Firefox, 499, 533
Folders, ASP.NET MVC, 113–18,

235–37
Footer.spark, 525
Form, 135, 145–47, 279–80
Form data, input parameters, 145–47
Form submission, 9–10
Forms authentication, 44–47, 158
Fowler, Martin, 103, 382–83
Front Controller pattern, 27–28, 92–93
FTP (File Transfer Protocol), 37–44
Function coverage, 452
Futures library, 541

G
Gateways, 149–50, 182
GenerateId, 531
GenerateMock, 462
GenerateRouteLink, 254
Geolocation API, 381
GET

$.getScript, 417–19
GET POST, 284
GetClientValidationRules, 352
GetControllerDescriptor, 491–92
GetControllerFactory, 397
GetControllerInstance, 484–86
GetControllerType, 481, 484–86
GetFilters, 505, 508
GetGlobalResourceObject, 376
GetHtmlHelper, 472
GetHttpHandler, 64, 76–78, 358, 484
GetHttpMethodOverride, 511
getIset, 488–89
getJSON, 410, 414–15
GetPage, 269–72
GetParameterValue, 306
GetPath, 224–25
GetPreferredEncoding, 504
GetRouteDataForUrl, 362
GetVirtualPath, 66
HTML forms rendering, 256
invocation attributes, 164–65
mocking Request object, 466–67
Post-Redirect-Get pattern, 323–24
redirect, 337
URL, view synchronization, 322–23

Global containers, 395–99
Global resources, 374–82

 HTTP modules 557

global.asax
catch-all route, 371–72
custom binder registration, 312–13
default binders, 345–46
legacy configurations, 70–75
mapping URLs to routes, 64–66
project template, 109–10
RegisterArea, 187
registering HTTP modules, 60–61
routes, defining, 357
Spark view engine, registration, 523
testing routes, 361–62

global.asax.cs, 56
GlobalContainerViewModel, 501
GlobalizationScriptPath, 421
Google Gears, 381
Gopher server, 3
GridView, 262–64
Guthrie, Scott, 6
gzip, 504

H
HandleError, 156, 160–61, 178, 367–71
HandleErrorInfo, 370
Handlers. See also HTTP handlers

click event, button, 414
HTTP, overview, 11–15
MvcRouteHandler, 358
PreInit, 239
route handlers, 484

handleSubmit, 431
HandleUnknownAction, 140–41, 148, 178–80
Hanselman, Scott, 466
HEAD, 256
hello.aspx, 55–57
Helpers

ActionLink, 425–26
AJAX helpers, ASP.NET MVC, 420–28
Ajax.ActionLink, 271–72
EditorForModel, 347–49
HTML

customizing, 529–37
data grid, building, 265–67
overview, 252–61
templated, 257–61
testing, 472–73

jQuery, 409–11
Paging, 267–69
TextBox, 340–41
ValidationMessage, 335–36
xVal, 353

Hidden, 252
HiddenFor, 252
HiddenInput, 344
Hierarchies, pages, 9, 15
HomeController, 265
HomeIndexViewModel, 241

HTML
ASP.NET limitations, 19
McvHtmlString class, 423–25
on Web pages, 4–5
testing in view, 273–75
writing views, 234–35

HTML encoding, views, 254
HTML helpers

customizing, 529–37
data grid, building, 265–67
EditorForModel, 347–49
Html.AntiforgeryToken, 163
overview, 252–61
Paging, 267–69
RenderAction, 196–97
templated, 257–61
testing, 472–73
TextBox, 340–41
ValidationMessage, 335–36
writing views, 252–61
xVal, 353

HTML template, ASP.NET AJAX, 411–13
Html, ViewPage property, 230
Html.ActionLink, 72, 187
Html.AntiForgeryToken, 163
Html.ValidationMessage, 256
Html.ValidationSummary, 256
HtmlEncode, 424–25
HTTP

ASP.NET runtime overview, 37–44
request handling, overview, 39–40

HTTP 301, 363–64, 366
HTTP 302, 371
HTTP 401, 158–60
HTTP 404, 55–57, 67, 71, 148, 178–79, 359, 361, 370
HTTP handlers. See also IHttpHandler

.mvc requests, 70
action request, input parameters, 145–47
as ASHX resource, 53–54
ASP.NET, 44, 403
ASP.NET MVC, 55–57, 132–34
asynchronous actions, 189
ChildActionMvcHandler, 197–98
data posted to controller, 279
IHttpAsyncHandler, 51
MvcRouteHandler, 358
overview, 12–13, 51–57
request execution, 50–51
request mapping, 44–47
server compatibility, 73

HTTP modules
ASP.NET runtime overview, 44
FormsAuthentication, 158
Model2, 92
overview, 57–61
registering, 60–61
server compatibility, 73
URL routing, web.config file, 108–09

558 HTTP POST

HTTP POST, 284, 322–23, 348
HTTP requests

action request, input parameters, 145–47
ASP.NET MVC, processing, 132–34
ControllerContext, 138–39
HttpRequest, 30, 511
HttpRequestBase, 79, 142, 511
HttpRequestWrapper, 78–79
IActionInvoker, 218
IController, 136

HttpApplication, 48–49, 57
HttpApplicationStateBase, 79
HttpApplicationStateWrapper, 79
HttpBrowserCapabilitiesBase, 79
HttpBrowserCapabilitiesWrapper, 79
HttpCachePolicyBase, 79
HttpCachePolicyWrapper, 79
HttpContext

Controller class, 142
ControllerContext, 139
global resources, 376
IController, 136
mocking, 463–71
MvcHandler, 77
route handlers, 64
testability, 30
URL rewriting, 62–63

HttpContext.Cache, 470–71
HttpContext.Current, 471
HttpContextBase

GetRouteData, 362
IController, 136
mocking Cache, 468–71
MvcHandler, 77
RequestContext, 64
System.Web.Abstractions, 79
testing controller actions, 454–58

HttpContextWrapper, 76–77, 79
HttpCookieCollection, 468
HttpDelete, 348, 510
HttpFileCollectionBase, 79
HttpFileCollectionWrapper, 79
HttpGet, 165, 322–23, 348, 510
HttpMethod, 426
HttpMethodOverride, 254, 256
HttpPost, 165, 348, 510
HttpPostedFileBase, 79
HttpPostedFileWrapper, 79
HttpPut, 165, 348, 510
HttpResponse, 366, 467–68
HttpResponseBase, 79, 142, 366
HttpResponseWrapper, 79
HttpRuntime, 49–50
HttpRuntime.Cache, 471
HttpServerUtilityBase, 79, 142
HttpServerUtilityWrapper, 79
HttpSessionState, 30
HttpSessionStateBase, 79, 464

HttpSessionStateWrapper, 79
HttpStaticObjectsCollectionBase, 79
HttpStaticObjectsCollectionWrapper, 79
HttpUnauthorizedResult, 154, 513
HttpUtility.HtmlEncode, 424–25

I
I/O completion ports, 189
IActionFilter, 144
IActionInvoker, 217–18, 488–89
IAsynchResult, 189
IAuthorizationFilter, 144
IBM Rational Robot, 101
IBrowserViewMapper, 507
IController, 136, 138
IControllerFactory, 77, 396, 480
id parameter, 284, 324
IDataErrorInfo, 345–46
Identity Map, 288
IDictionary, 97, 152–53
IEntityWithChangeTracker, 295–96
IEntityWithKey, 295–96
IEntityWithRelationships, 295–96
IExceptionFilter, 144, 367–68
Ignore, 446
IgnoreRoute, 67, 358
IHtmlString, 254, 424–25
IHttpAsyncHandler, 51
IHttpHandler

code-behind class, 13–15
interface, 51–52
overview, 12, 51–57
request execution, 49–51, 76–78

IHttpModule, 57–61
IIS (Internet Information Services)

.mvc requests, 70
ASP.NET runtime overview, 37–44
compatibility, 71, 73
compressing responses, 502
default.aspx file, 111–12
error-handling policies, 372–73
extensions and filters, 42
IIS Manager, 43
IIS Messaging Pipeline, 42–47, 49–50
rewrite module, 364

ILogger, 177, 393, 449
IModelBinder, 310–12
Inbound links, 365
Include, BindAttribute class, 309–10
IncomingRequest, 66
Increment method, 193–94
Index, 265, 269–72, 455–56
index.aspx, 525
index.spark, 525
Index_Firefox, 499
Init events, 14, 57–60, 403
Initialize method, 140, 181

 Keep method 559

Injection points, 177
InjectionConstructor, 397–98
Inner members, testing, 451–52
InnerHtml, 531
Input data

binding, 324
posting forms, AJAX, 430–31
rendering input elements, 256
Web Forms controllers, 128–32

Input forms, displaying, 320–21
Input parameters, controller methods, 134–35, 143,

145–47, 171
InsertionMode, AjaxOptions

property, 427, 430
Instances, registering, 391–92
Integrated mode, IIS pipeline. See also Microsoft

Internet Information Services (IIS)
.mvc requests, 70
application pools, 43
ASP.NET requests, 45–47
compatibility, 73
default.aspx file, 111–12
request processing, 49–50
TrySkipIisCustomErrors, 373

Integration tests, 199
IntelliSense, 301, 539–42
Interface

implementing, 23
MVC view actor, 86–87
MVVM in, 106–07

Interface-based programming,
design, 438–40

Internal members, testing, 451–52
InternalsToVisible, 452
InternalsVisibleTo, 149, 451
Internet Information Services (IIS). See Microsoft

Internet Information Services (IIS)
Internet Server Application Programming

Interface (ISAPI), 40–42, 49
Intrinsic objects, 249
Inversion of Control (IoC). See also Dependency

injection (DI)
action filters, dynamic loading, 506–08
containers, 388–91
controller instance, getting, 485–87
DefaultControllerFactory, 183
dependency injection, 177, 208
IRegistry, 304

Invocation attributes, 164–65
InvoiceController, 169
InvokeAction, 380–81
InvokeActionMethodWithFilters, 505–06
InvokeActionResult, 512
IoC. See Inversion of Control (IoC)
IPOCO interfaces, 295–96
IPostBackDataHandler, 14
IPostBackEventHandler, 14, 126–28
IRegistry, 304

IResultFilter, 144
IRouteConstraint, 65–66, 360
IRouteHandler, 64, 358–59, 484
ISAPI (Internet Server Application Programming

Interface), 40–42, 49
IsChildAction, 197–98
IsPostBack, 262
IsReusable, 51–52
ISupportValidation, 292–93
IsValidForRequest, 166–67, 511
ITempDataProvider, 142
IView, 216, 219–21, 229
IView.Render, 229
IViewDataContainer, 237
IViewEngine, 96, 214, 220–21, 521–23
IViewLocationCache, 225

J
Java Server Pages (JSP), 4, 91–92
JavaScript

AJAX in ASP.NET, 405–08
AJAX in ASP.NET MVC, 408–13
client validation, 351
content, returning, 417–19
Controller class methods, 140
JavaScriptResult, 140, 154,

418–19, 514
JavaScriptStringEncode, 421
on Web pages, 4
temporary messages, 341–42

jQuery
AJAX API, 410
HTML helpers, 534–37
jQuery.get(), 410
jQuery.getJSON(), 410
jQuery.getScript(), 410
jQuery.load(), 410
jQuery.post(), 410
library, 408–11, 417, 534
returning markup, 419–20

JSON
AJAX in ASP.NET, 406–08
AJAX in ASP.NET MVC, 414–17
jQuery.getJSON, 410
Json, 140
jsoncallback, 416
JsonResult, 154, 414–15
metadata, 351

JSONP, 410, 415–17
JsonpResult, 416–17
JSP (Java Server Pages),

4, 91–92

K
Keep method, 339

560 Label

L
Label, HTML helper method, 252
LabelFor, 252
LAMP (Linux, Apache, MySQL, PHP), 5
Language, @WebHandler, 54
Legacy configurations, 70–75
Libraries

ActiveX Template Library (ATL), 42
AJAX 4 library, 411–13
DLL (Dynamic Link Library), 40
Enterprise Library, 293–96, 298, 327–30
Futures, 541
jQuery library, 408–11
Microsoft AJAX library, 408

Lifetime managers, 394–95
Linking data, 271–72, 500–02
LINQ lookup tables, 482
LINQ-to-SQL, 150, 291, 294, 325
Linux, 5
ListBox, 253
ListBoxFor, 253
Literal controls, 250
LLBLGen Pro, 288
Load events, 14, 403
load function, jQuery, 419–20
loadingElement, AjaxOptions

property, 428
LoadingElementId, 427
LoadViewState, 14
locale, MapRoute expression, 359
Localization, resources, 374–82, 473
Logger property, 177
Logging

ASP.NET requests, 44–47
Controller Super class, 177
filters, 506–08
ILogger to DefaultLogger

mapping, 393
LogRequest, 48
PostLogRequest, 48

Logic, adding to models, 291–99
Logic, adding to view, 246–47
Login, 278
LogRequest, 48, 58

M
Maintainability, Design for Testability, 438
MapPageRoute, 358–59
Mapper property, 508
Mapping

AutoMapper, 303
behavior to methods, 170–74
functions to controllers, 168–70
ILogger to DefaultLogger, 393
URLs to routes, 64–66

MapRequestHandler, 48, 58

MapRoute
asynchronous routes, 191
defining routes, 357
global.asax file, 110
route constraints, 359–61
route handlers, 358
RouteCollection, 67
URLParameters, 65

Markup generation, Model2, 93
Martin, Robert, 383, 440
Master pages, navigating, 547–48
Master pages, writing, 237–39
MasterLocation, 230–31
MasterLocationFormats, 225
MasterName, 219–20
Match method, 66
McvHtmlString class, 423–25
McvHtmlString.Create, 425
MergeAttribute, 531
Messages, error, 334–36
Messages, temporary, 341–42
Metadata

display and, 343–44
search engine optimization, 362
validation, 352

MetadataType, 298
Methods, mapping behavior to, 170–74
MFC (Microsoft Foundation Classes), 42
Microsoft AJAX library, 408
Microsoft Enterprise Library, 293–96, 298, 327–30
Microsoft Foundation Classes (MFC), 42
Microsoft IntelliSense, 539–42
Microsoft Internet Information Services (IIS)

.mvc requests, 70
ASP.NET runtime overview, 37–44
compatibility, 71, 73
compressing responses, 502
default.aspx file, 111–12
error-handling policies, 372–73
extensions and filters, 42
IIS Manager, 43
IIS Messaging Pipeline, 42–47, 49–50
rewrite module, 364

Microsoft Silverlight, 258
Microsoft Visual Studio

abstracting domain entities, 288–90
Active Record pattern, 291
autonomous views, 82
Controller class, design of, 167–68
HTTP handler, 12
MSTest, 204–05
Scripts folder, 408, 426
T4 templates, 291
testing tools, 275
validation, 294
Visual Studio 2008 Team Tester edition, 101
Web Client Software Factory (WCSF), 24

Microsoft.Practices.ObjectBuilder2, 391

 OnException 561

Microsoft.Practices.Unity, 391
Microsoft.Practices.Unity.Configuration, 391
MicrosoftAjax.js, 426, 428
MicrosoftMvcAjax.js, 426
Missing method, 372
Mock objects, 208, 449–51, 458–63
mod_mono module (Apache), 38
Model actor, 93, 97–98, 104. See also Model binding;

Models; Model-View-Controller (MVC) pattern
Model binding

complex data types, 147–48
data entry, 332
data posted to controller, 280
direct domain object binding, 285
drop down lists, 266
evolution of, 344–46
ModelBinderDictionary, 344–46
overview, 305–13
redisplaying attempted values, 340
URLs to action method, 146

Model property, view-model container, 152–53
Model, Spark, 526
Model, ViewDataDictionary property, 240–41
Model, ViewPage property, 230
Model1, 91
Model2, 90–98, 184
ModelMetadata, 240–41, 346
Models. See also Model binding; Model-View-Controller

(MVC) pattern
data posted to Controller, 279–80
data worked on in view, 280–81
domain model and view model

business object modeling, 286–91
data for view, 299–305
validation logic, adding, 291–99

domain-specific entities, 281–82
folder, 117–18, 282–86, 302–03
overview, 277–78

ModelState, 142, 240–41, 332–34, 336–37, 339–40
ModelStateDictionary, 142, 332–34
Model-View-Controller (MVC) pattern.

See also ASP.NET MVC
anatomy of, 135
Controller filter interfaces, 144
ControllerBase, 137–39
controllers, mechanics of, 132–35
HTTP handlers, 55–57
IController, 136
limitations of, 89–90
Model2 pattern, 90–98
MVP pattern, 98–103
overview, 21–22, 26–30
Presentation Model (MVVM), 103–07
presentation pattern overview, 81–88
presentation variations, 98–107
Project Template, overview, 107–13
request processing, 143
special folders, 113–18

Model-View-Presenter (MVP) pattern, 21–24,
98–103, 130–31

Model-View-ViewModel (MVVM), overview, 98, 103–07
MonoRail, 19–20, 92, 184
Moq, 450
MSTest, 204–05, 444
MVC pattern. See Model-View-Controller (MVC) pattern
MVC triad, defined, 83. See also ASP.NET MVC
MvcHandler, 76–78, 478–79
MvcHtmlString, 254, 531
MvcHtmlString.Create, 531
MvcHttpHandler, 111–12, 132–34
MvcRouteHandler, 75–78, 358
MVP (Model-View-Presenter) pattern, 21–24,

98–103, 130–31
MyContainer, 527
MyDescriptionCache, 491–92
MyRootDomainObject, 293
MySQL, 5

N
Name resolution, 224–25
Naming, resources, 375, 379
Naming, routes and URLs, 363
Navigation, ReSharper (R#), 545–49
Network News Transfer Protocol (NNTP), 37–44
NHibernate, 150, 288
NInject, 389
NMock2, 450
NNTP (Network News Transfer Protocol), 37–44
NoAsyncTimeout, 156, 194–95
NonAction, 148–49, 166–67, 510
Nonpublic members, testing, 451–52
NotNullValidator, 293
NotSupported, 358
null, input parameters, 146–47
NullReferenceException, 340, 524
NUnit, 444

O
O/RM (Object/Relational Mapper), 150, 288, 325
Object orientation, Design for Testability, 442–43
Object stereotypes, 171
Object/Relational Mapper (O/RM), 150, 288, 325
ObjectContext, 150
Object-oriented pattern, persistence and, 287–88
Observer pattern, 86–87, 89
OnActionExecuted, 144
OnActionExecuting, 144
OnAuthorization, 144, 160
OnBegin, AjaxOptions property, 427, 431
OnBeginRequest, 60
Once and Only Once (OAOO), 322–23, 364
OnComplete, AjaxOptions property, 427
OnEndRequest, 60
OnException, 144, 178, 367, 370

562 OnFailure

OnFailure, 427
OnModelUpdated, 311, 345–46
OnPropertyValidating, 311
OnResultExecuted, 144
OnResultExecuting, 144, 498
OnSuccess, 426–27
OnXxxChanged, 295
OnXxxChanging, 295
Open-source LAMP, 5
Opera, 533
OperationCounter, 193–94
Order property, 156, 497
OrderController, 169
Output caching, 44–47
OutputCache, 156–57, 161, 198
OutstandingOperations, 193–94
Overloads, 187

P
Page class, 230
Page Controller pattern, 11–15, 27–28, 81
Page life cycle, 13
Page_Load, 111–12, 263
Paged views, 261–72
Pager, HTML helper, 267–69
PageRouteHandler, 358–59
Pages

asynchronous, 188
code-behind classes, 13–15
hierarchies, 9, 15
navigating, 547–48
postbacks, 9–10

Parameters
automatic parameter resolution, 147–48
dictionary, 134–35, 141, 194, 474
GetParameterValue, 306
input action methods, 145–47
null, 146–47
testing, passing controller action, 456–57

Partial rendering
AJAX in ASP.NET, 402–05
ASP.NET MVC, 432

Partial views, 222–23, 231–33, 237, 247
Partial, HTML helper method, 253
PartialView, 140, 270–72
PartialViewLocationFormats, 225
PartialViewResult, 140, 154–55, 429
Passive View (PV), 100, 248–49
Password, HTML helper method, 252
PasswordFor, HTML helper method, 252
Path coverage, 452
pathInfo, 67
Performance

downloads, 11
local resource storage, 382
partial rendering, ASP.NET, 405

PerformTask, 129–30

PerformTaskAsync, 192
Permanent redirect, 364
PermanentRedirectResult, 514–15
Persistence, 287–88, 325, 339–40
Personal Home Page (PHP), 5
PerThreadControlledLifetimeManager, 394
Physical files, requests for, 66–67
PipelineRuntime, 50
Placeholders, 8–9, 63–67
Ports

80, ASP.NET runtime overview, 37
I/O completion ports, 189

POST
annotated objects, 348
HTML forms, 256
invocation attributes, 165
mocking Request object, 466–67
passing data to view, 285–86
posting data to controller, 279–80
Post-Redirect-Get pattern, 323–24
redirect, 337
URL, view synchronization, 322–23

PostAcquireRequestState, 48, 58
PostAuthenticateRequest, 47, 58
PostAuthorizeRequest, 47, 58
Postback

ASP.NET partial rendering, 402
handling, 264–65
pages, 9–10
request, 126
TempData collection, 336–39

Posted data object model, 280
PostLogRequest, 48, 58
PostMapRequestHandler, 48, 58
Post-Redirect-Get (PRG), 322–24, 336–39, 342
PostReleaseRequestState, 48, 58
PostRequestHandlerExecute, 48, 50, 58
PostResolveRequestCache, 47, 58, 63
PostUpdateRequestCache, 48, 58
Prefix, BindAttribute class, 309
PreInit, 239
PreRender events, 14
PreRequestHandlerExecute, 48, 50, 58
PreSendRequestContent, 48, 58
PreSendRequestHeaders, 48, 58
Presentation Model (MVVM), overview, 103–07
Presentation patterns

ASP.NET MVC Project Template, overview, 107–13
ASP.NET MVC special folders, 113–18
Model View Presenter (MVP) pattern, overview,

98–103
Model2, overview, 90–98
MVC, limitations, 89–90
MVC, overview, 81–88
Presentation Model (MVVM), 103–07

Presenter actor, implementation, 101, 105
Presenter class, 20. See also Model-View-Controller

(MVC) pattern

 Roles 563

PRG pattern, 336–39, 342
ProcessRequest, 12, 50–52, 76–77, 233, 478–79
ProcessRequestInit, 479
productId, MapRoute, 359
Productivity, improvements in, 6
Public methods, 148–49
PUT, 165, 256

Q
Query string values, 145–47
QueryString, 135, 145–47, 279–80
Queues, request handling, 39–40

R
RAD (rapid application development), 4, 6–8
RadioButton, 252
RadioButtonFor, 252
RaisePostBackEvent, 126–28
Range, data annotation attribute, 297, 351–52
RangeValidator, 294
Rapid application development (RAD), 4, 6–8
Rational Robot, 101
RDD (Responsibility-Driven Design), 171
Readability, Design for Testability, 438
Readability, Spark, 528–29
Redirect

Controller class method, 140–41
login page, 158
permanent, 365–66
testing, 458
trailing slash, 363–64

RedirectPermanent, 366
RedirectResult, 140, 154, 515
RedirectToAction, 140–41, 325
RedirectToRoute, 140–41
RedirectToRouteResult, 140, 154
Refactoring, ReSharper, 548–49
Refresh, data grid, 265–67
Registration

ad hoc routes, 370–71
custom binder, 312–13
custom validation attribute, 352
RegexValidator, 293
RegisterAllAreas, 187
RegisterArea, 187
RegisterInstance, 391–92, 506
RegisterMvc.wsf, 71
RegisterRoutes, 361–62
RegisterType, 391–92
routes to areas, 186–87
types and instances, 391–92

Registry, common data, 304–05
RegularExpression, 297, 351–52
RelativeDateTimeValidator, 293
ReleaseRequestState, 48, 58
ReleaseView, 221

RenderAction helper, 196–98
Rendering views

data grid, 265–67
HTML forms, 255–56
input elements, 256
IView.Render, 229
overview, 233
Pager, 268
partial views, 237, 402–05, 428–32
RenderPartial, 198, 232, 242, 253
user feedback, 334–36

Repository, 149–50, 173–74, 288
Requests

ASP.NET MVC, 75–79
execution, ASP.NET MVC overview, 143
life cycle, ASP.NET requests, 44–51
objects, 279–80, 466–67
overview, 39–40
physical files, 66–67
processing, customizing, 478–80
Request property, Controller class, 142, 145–47
request, AjaxOptions property, 428
Request.Form, 94, 466–67
Request.QueryString, 94
RequestContext, 64, 138–39, 358
testing, 463–66

Required, data annotation attribute, 297, 351–52
RequireHttps, 156
ReSharper (R#)

coding assistants, 543–45
IntelliSense extensions, 539–42
navigation, 545–49
overview, 539
static analysis, 542–43

ResolutionFailedException, 508
Resolve, 392–93
ResolveAll, 393
ResolveRequestCache, 47, 58
Resources

localization, overview, 374–82
localizing views, 251
testing, 473

Response objects, 372, 467–68
Response property, Controller class, 142
response, AjaxOptions property, 428
Response, testing, 466
Response.Output, 233
Response.Redirect, 365–66
Responses, compressing, 502–04
Responsibility-Driven Design (RDD), 171
REST (REpresentational State Transfer), 28–29
REST API, 256
ResultFilter, 497
Results, 96, 134, 153–55, 457, 512–20
RESX file, 376
RewritePath, 62–63
Rhino Mocks, 362, 450, 465, 469
Roles, Authorize attribute, 158–60

564 Routing

Routing
ASP.NET MVC request processing, 75–79
compatibility, 73–74
constraints, 359–61
controller name, customizing, 483–84
devising routes and URLs, 363
permanent redirection, 365–66
processing, 356–57
registering routes to areas, 186–87
Route class, 360
route handlers, 55–57, 64, 358–59
RouteBase, 356–57
RouteCollection, 66–67, 142, 357, 421
RouteData, 139, 142
RouteDirection, 66
RouteExistingFiles, 66
RouteLink, 252, 257, 421
RouteTable.Routes, 110
routeValues dictionary, 187
same content, multiple URLs, 364–65
search engine optimization, 362
testing, 361–62

trailing slash and search engine
optimization, 363–65

URL routing, global.asax file, 109–10
URL routing, web.config file, 108–09

Rule sets, 294
RulesException, 353
runat, 11
Runtime environment

ASP.NET MVC requests, 75–79
ASP.NET MVC run-time shell, 67–75
ASP.NET requests, 44–51
ASP.NET runtime machinery, 37–44
code blocks, views, 244
data posted to controller, 279–80
HTTP handler, overview, 51–57
HTTP modules, overview, 57–61
postback requests, 126–28
posting data to domain objects, 284
URL routing, overview, 61–67

S
Save, input data, 324–25
SaveViewState, 14
Scaffold, 344
Scalability, 40, 174, 187–88
ScriptManager, 403, 407, 411
ScriptModule, 108
Scripts folder, 117, 408, 426
Search engine optimization (SEO)

custom error routing, 371
permanent redirection, 365–66, 514–15
routing, 362
same content, multiple URLs, 364–65
trailing slash, 363–64

SearchedLocations, 221

Security. See also Authorization; Validation
cross-domain calls, scripting, 410
Cross-Site Request Forgery (CSRF) attack, 162–63
Cross-site scripting (XSS) attack, 162–63
direct domain object binding, 285
public action methods, 148
signatures, 284, 308

Select-Edit-Save (SES) pattern, 318–25
Selective update, 428–32
Selenium, 275
SEO. See Search Engine Optimization (SEO)
Separation of concerns (SoC)

data worked on in view, 280–81
layering code, 127–28
overview, 17–18
Web Forms, limits of, 126
Web Forms, overhead, 130–31

Server controls
in view, use of, 261–72
limitations, 19, 234–35
overview, 11

Server property, Controller class, 142
Server, testing, 466
Server.Execute, 233
Server.HtmlEncode, 424–25
ServerVariables, 135, 145–47
Service Layer, 149–50, 201–03
Service locator pattern, 384–86
servlet API, 91–92
Session object, NHibernate, 150
Session property, Controller class, 142
Session state acquisition, ASP.NET

requests, 44–47
Session state, mocking, 463–65
SessionStateTempDataProvider, 142
SetControllerFactory, 396, 480
SetInnerText, 531
SetModelValue, 341
SetRenderMethodDelegate, 245
SeviceLayerContext, 201–03
Shared folder, 116, 526
Signature, Controller superclass, 176–77
Signatures, 284, 308
Silverlight, 106–07
Simple Mail Transfer Protocol (SMTP), 37–44
Simplicity, Design for Testability, 437–38
Single responsiblity principle (SRP), 170
Skinny controllers, 332
SMTP (Simple Mail Transfer Protocol), 37–44
SoC. See Separation of concerns (SoC)
SOLID, 440, 477
SortEncodings, 504
Spark view engine, 214, 411, 521–29
Spark, HTML helpers, 531
Spring.NET, 389–90
SRP (single responsibility principle), 170
Stateless programming, 8
Statement coverage, 452

 TextBoxFor 565

Sterotypes, 171–74, 332
StopRoutingHandler, 67, 358
Storage

folders, 113–18, 235–37
localized resources in database, 382
partial view, 237
Views folder, 235–37

String type, 349
StringLength, 297, 351–52
StringLengthValidator, 293–94
StructureMap, 389
Struts, 92
Subsonic, 291, 294
SuperClass, 176–77
Supervising Controller (SVC), 100–01, 390
Supervising view, 248–49
SVC (Supervising Controller), 100–01, 390
Symbols, locating, 547
Synchronous handlers, 12, 51–57. See also Handlers
SyndicationItem, 518
SyndicationResult, 516–18
Sys.Net.WebRequest, 428
Sys.Net.WebRequestExecutor, 428
System.ComponentModel, 345–46
System.ComponentModel.DataAnnotations,

296, 343–44
System.ServiceModel.Syndication, 516
System.ServiceModel.Web, 516
System.Threading.Timeout.Infinite, 194–95
system.web, 222, 358–59
System.Web.Abstractions, 70, 108–09
System.Web.Caching.Cache, 469–71
System.Web.Hosting, 222
System.Web.HttpRuntime.CodegenDir, 246
System.Web.Mvc

ASP.NET MVC assemblies, 70, 109, 424–25
ControllerBase, 137–39
FilterInfo, 505
HtmlHelper, 531
IController, 136
MvcRouteHandler, 75–78
RouteCollection, 67

System.Web.Routing, 64, 70, 109, 356–59
System.Web.UI.Page, 13–15, 51–52, 233
Sys-template style, 412–13

T
T4 Templates, 291
Table Module pattern, 282, 287–88
TagBuilder, 531
TempData

ControllerBase, 137
data entry, 336–39
dictionary, 337–39
invoking actions, 488
request execution, 143
TempDataProvider, 142, 338

temporary messages, 342
View ResultBase, 218
ViewContext, 220
ViewPage, 230

Templates
ActiveX Template Library (ATL), 42
ASP.NET MVC project, overview, 107–13
HTML helpers, 257–61
HTML, in ASP.NET AJAX, 411–13
T4 Templates, 291
views, 214–15, 235–41

Temporary ASP.NET files, 246. See also TempData
Temporary messages, 341–42. See also TempData
Testing

action invoker class, 139
action methods, 174
ASP.NET limitations, 18, 20–21
ASP.NET MVC overview, 29–30
ASP.NET MVC wrapper objects, 78–79
asynchronous methods, 473–75
code-behind class, limits of, 125–26
controllers, 199–208
coupling of action methods, 149
culture-specific items, 379
dependency injection, 387–88
Design for Testability (DfT), 436–43
HTML helpers, 472–73
localized resources, 473
MVC views, 89
overview, 435–36
persistence, 288
public nonaction methods, 149
routes, 361–62
test harness, 204, 443–47
Test-By-Poking-Around, 18
Test-By-Release, 18
TestClass, 205, 445
TestCleanup, 205, 445
TestInitialize, 205, 445
TestMethod, 205, 445
unit testing

action controllers, 454–58
aspects of testing, 447–54
data-driven tests, 447
HTTP context, mocking, 463–71
injecting mocks and fakes, 458–63
MSTest and UNit, 444
overview, 443
test harness, 443–47
text fixtures, 444–45

user interface, 100–01
views, 22, 273–75
Web Forms, 131–32

Text fixtures, testing, 444–45
TextArea, 253
TextAreaFor, 253
TextBox, 252, 340–41
TextBoxFor, 252

566 ThreadAbortException

ThreadAbortException, 367
ThreadPool, 189
Timeout, 194–95
Tokens, 156, 162–63, 253, 357–58
ToMvcHtmlString, 531
ToString, 155, 531
Tracking changes, 295–96
Trailing slash, 363–65
Try/catch blocks, 367–68, 508
TrySkipIisCustomErrors, 372–73
TryUpdateModel, 141, 307, 324–25, 341
TryValidateObject, 298
TypeMock, 450
TypeMock Isolator tool, 469
Types, registering, 391–92

u
UIHint, 298, 344
Unit of Work, 288
Unit testing

action controllers, 454–58
aspects of testing, 447–54
asynchronous methods, 473–75
culture, 379
data-driven tests, 447
Design for Testability (DfT), 436–43
HTML helpers, 472–73
HTTP context, mocking, 463–71
injecting mocks and fakes, 458–63
IRegistry, 304
localized resources, 473
MSTest and UNit, 444
overview, 435–36, 443
test harness, 443–47
text fixtures, 444–45
writing tests, 18, 199, 204–08

Unite and Conquer, 365
Unity, 389, 391–99
UnityContainer, 391
University of Minnesota, Gopher server, 3
Unknown actions, 178–80
Unload events, 14
Updates

binding input data, 324
partial rendering, ASP.NET MVC, 428–32
TryUpdateModel, 141
UpdateCustomer, 330
UpdateCustomerData, 280
UpdateModel, 141, 307
UpdatePanel, 402–05
UpdateRequestCache, 48, 58
UpdateTargetId, 427, 429–30
updateTargetId, AjaxOptions property, 428

URLs
adjusting on the fly, 431
compatibility, 73
constraints, 359–61

controller name, customizing, 483–84
formatting, data entry, 319–20
global.asax file, 109–10
IntelliSense extensions, 541
mapping, 29
parameters, 63–67
permanent redirection, 365–66
Post-Redirect-Get pattern, 323–24
processing routes, 356–57
redirection, 140–41
registering HTTP handlers, 52
rewriting, 61–63
route handlers, 358–59
routing engine, 62–67
routing, overview, 61–67
same content, multiple URLs, 364–65
search engine optimization, 362–65
synchronizing with view, 322–23
trailing slash, 363–65
Url property, Controller class, 142
Url, AjaxOptions property, 427
Url, ViewPage property, 230
UrlGeneration, 66
UrlHelper, 257
UrlRouting.axd, 73
UrlRoutingModule, 70
web.config file, 108–09

User controls, IntelliSense extensions, 542
User property, Controller class, 142
UserControl, 230
Users. See also Authorization

feedback, providing, 334–36
input, overview, 29

V
Validation

adding logic to models, 291–99
client-side, 351–54
data annotations and

validators, 342–50
data input, 325
Entity Framework, 294–96
filter attributes, 156
messages, 253, 256, 334–35, 339–40
metadata, 343–44
objects, 330–32
saving business rules, 330
server side, 326–42
Validate method, 293
ValidateAntiForgeryToken, 156, 162–63
ValidateAttribute, 297
ValidateInput, 156, 163–64
ValidateRequest, 137, 163–64
Validation Application Block, 293–94
ValidationContext, 298
ValidationMessage, 253, 334–35
ValidationMessageFor, 253

 Void return value 567

ValidationResult, 298, 327–28
ValidationResults, 292–94
ValidationSummary, 253, 335–36
Validator, 298

ValueProvider, 137, 141, 145, 341
VaryByParam, 161
Verbs, HTTP, 348
View actor. See also Views

implementation, 95–96
implementation, MVP, 100–01
implementation, Presentation Model (PM), 104–05
Model2, 93
MVC, 86–87

View engine
ActionResult, 155
customizing, 521–29
default, 222–25
overview, 213–14, 220–21
Spark, 411
testability, 30
ViewEngineCollection, 218, 523
ViewEngineResult, 221

ViewData. See also ViewDataDictionary;
 Views

AjaxHelper class, 421
ControllerBase property, 137
data presentation, 319
filtering, 231–33
linking data across views, 501–02
model actor, 97
ModelState, 142, 332–34
partial views, 237
passing data to view, 151–53
temporary messages, 342
ViewContext, 220
ViewData.Model, 153, 301
ViewDataContainer, 421
ViewDataEval, 526
ViewDataKey, 232
ViewPage, 230–31
ViewResult property, 218
vs. Model, 240–41

ViewDataDictionary
ASPX markup, 243
catch-all route, 372
HandleError, 370
models, data for view, 299–305
partial views, 231–33
passing data to view, 97, 151–53, 213
strongly typed view, 239–40
ViewData vs. Model, 241

Views. See also Model-View-Controller (MVC)
pattern; View actor; ViewData;
ViewDataDictionary; View engine

action invoker, 217–18
ActionResult, 155
Controller class method, 141, 216–17
controllers and, 212–15

creating, 220–22, 543–44
custom, browser specific, 497–500
data worked on in view, 280–81
default view engine, 222–25
defined, 113
IView, 221
MonoRail, 20
names, IntelliSense, 539–41
navigation, 545–47
overview, 211
partial views, 222
passing data to, 97, 151–55, 285–86
rendering actions, 195–98
static analysis of, 542–43
synchronizing, 322–23
template for, 214–15
testing, 273–75, 457
view state, overview, 10–11
ViewContext, 220, 230, 421
ViewLocationCache, 225
ViewLocationFormats, 225
ViewMasterPage, 237–39
ViewModel, 281, 301–03
view-model container, 152–53
ViewName, 218, 457
ViewPage, 153, 230–31, 243, 253
ViewResult, 96, 141, 154–55,

216–20, 233–34
ViewResultBase, 96, 155, 218–20
views folder, 115–16
ViewUserControl, 230–31, 237, 253
Web Forms controllers, 129–30
WebFormsViewEngine, 226–33
writing

action links, 256–57
adding views, 235–37
configuration settings, 249–50
datagrids and paged views, 261–72
filling up the view, 241–51
HTML encoding, 254
HTML helpers, 252–61
intrinsics, 249
localizing views, 250–51
master pages, 237–39
overview, 233–35
passive or supervising, 248–49
rendering HTML forms, 255–56
rendering input elements, 256
server controls, 261–72
strongly typed, 239–40
templates, 235–41
ViewData vs. Model, 240–41

VirtualPathProvider, 96, 222–25
VirtualPathProviderViewEngine, 96, 226
Visibility, Design for Testability, 437
Visual elements, storage of, 14
Visual Studio. See Microsoft Visual Studio
Void return value, 155

568 w3wp.exe

W
w3wp.exe, 40
waitHandle, 474
WatiN, 101, 275
Web Administration Service (WAS), 39–40
Web Client Software Factory (WCSF), 24–25, 102
Web Forms model

coding MVP, 22–24
controllers, overview, 128–32
mixing MVC pages, 73–75
Model-View-Presenter pattern (MVP), 21–24
overview, 9–11
partial rendering, 432
PRG pattern, 336–39
request algorithm, 50–51
testing, 131–32
trailing slash, routing, 363–64
user control, 237
vs. ASP.NET MVC, 30–35, 215

Web page, defined, 4
Web server

ASP.NET MVC compatibility, 70–75
ASP.NET runtime environment, 37–44

Web services, 406, 411
web.config file

ASP.NET request processing, 50
default configuration, 68–70
HandleError, 160
HTTP modules, 57

MVC project template, 107–13
registering HTTP handlers, 52, 54
registering HTTP modules, 60–61
Unity container configuration, 393
ValdiateRequest, 163–64

WebForm1_ViewEngine, 129–30
WebFormsViewEngine, 222, 226–30, 234
WebFormView, 228–30
WebFormViewEngine, 96
Wildcard script map, 72
Win32 ISAPI filters, 49
Window Presentation Foundation (WPF),

106–07
Windows Forms, development of, 7
Windows Presentation Foundation (WPF), 258
Windows Server 2000, 71
Windows Server 2003, 71
Windows Server 2008, 71
Windows Vista, 71
Wrapper objects, 30, 78–79
WriteFile, 520
Writer, ViewPage property, 230

X
XAML markup, 106–07
XP practices, 323
XSS (cross-site scripting) attack, 162–63
xVal framework, 352–54

Dino Esposito
Dino Esposito is an architect and a trainer based in Rome, Italy.
Dino specializes in Microsoft Web technologies, including ASP.NET,
AJAX, and Silverlight, and spends most of his time teaching and
consulting across Europe, Australia, and the United States.

Over the years, Dino developed hands-on experience and skills in
architecting and building distributed systems in industry contexts
where the demand for maintainability, extensibility, scalability,
and interoperability is dramatically high. Every month, a variety

of magazines and Web sites throughout the world publish Dino’s articles covering topics
 ranging from Web development to data access and from software best practices to design
principles. A prolific author, Dino writes the monthly “Cutting Edge” column for MSDN
Magazine and the “CoreCoder” column for DevProConnections magazine.

As a widely acknowledged expert in Web applications built with .NET technologies, Dino
often works with emerging companies, helping them realize their potential with passion
and pleasure. In particular, Dino is directly involved in the Ibrii project (http://www.ibrii.com).
Ibrii is a cool, new social network application for sharing everything you see on Web pages
and was built entirely with the Microsoft Web stack.

Dino has written an array of books, most of which are considered state of the art in their
respective areas. His more recent books are Microsoft .NET: Architecting Applications for
the Enterprise (co-authored by Andrea Saltarello; Microsoft Press, 2008) and ASP.NET
and AJAX: Architecting Web Applications (Microsoft Press, 2009). Dino regularly speaks at
 industry conferences all over the world (including Microsoft TechEd, Microsoft TechDays,
DevConnections, DevWeek, Software Architect, and Basta) and at local technical conferences
and meetings in Europe and the United States.

Dino lives near Rome and keeps in shape playing tennis at least twice a week at CT
Monterotondo.

	Cover Page
	Copyright Page

	Dedication Page
	Contents at a Glance Page
	Table of Contents Page
	Acknowledgments Page
	Introduction
	ASP.NET MVC and Web Forms
	Who Is This Book For?
	Companion Content
	Hardware and Software Requirements
	Support for This Book
	We Want to Hear from You

	Part I: The Programming Paradigm
	Chapter 1: Goals of ASP.NET MVC and Motivation for Its Development
	The Deep Impact of ASP.NET
	Productivity Is King
	The Web Forms Model
	The “Page Controller” Pattern

	The ASP.NET Age of Reason
	ASP.NET’s Signs of Aging
	The Turning Point

	ASP.NET MVC at a Glance
	ASP.NET MVC Highlights
	Web Forms vs. ASP.NET MVC

	Summary

	Chapter 2: The Runtime Environment
	The ASP.NET Runtime Machinery
	ASP.NET and the IIS Web Server
	Life Cycle of an ASP.NET Request
	What’s an HTTP Handler, Anyway?
	What’s an HTTP Module, Anyway?
	URL Routing

	The ASP.NET MVC Run-Time Shell
	The Big Picture
	Processing an ASP.NET MVC Request

	Summary

	Chapter 3: The MVC Pattern and Beyond
	The Original MVC Pattern
	MVC Interaction Model
	The Original Idea
	Presenting the Actors
	Limitations of the MVC Pattern

	The Model2 Pattern
	MVC and the Web
	Model2 and ASP.NET MVC

	Presentation-Oriented Variations of MVC
	The MVP Pattern
	Presentation Model Pattern (Also Known as MVVM)

	The ASP.NET MVC Project Template
	Peculiarities of an ASP.NET MVC Project
	ASP.NET MVC Special Folders

	Summary

	Part II: The Core of ASP.NET MVC
	Chapter 4: Inside Controllers
	The Role of Controllers and the Motivation for Using Them
	Beyond the Code-Behind Approach
	Introducing Controllers
	Mechanics of Controllers in ASP.NET MVC

	Anatomy of an ASP.NET MVC Controller
	Inside the Structure of a Controller
	Behavior of a Controller
	Attributes of Controllers and Action Methods

	Writing a Controller
	Design of a Controller Class
	Should You Use Your Own Base Class?

	Special Capabilities
	Grouping Controllers
	Asynchronous Controllers
	Render Actions

	Controllers and Testability
	Making Controllers Easy to Test
	Writing Unit Tests

	Summary

	Chapter 5: Inside Views
	Views and Controllers
	From Controllers to Views
	Building the Response for the Browser

	Anatomy of an ASP.NET MVC View
	Selecting the View
	Creating the View
	The Default View Engine
	The Web Forms View Engine

	Writing a View
	The View’s Template
	Filling Up the View
	HTML Helpers
	Templated HTML Helpers
	Datagrids and Paged Views
	Testing a View

	Summary

	Chapter 6: Inside Models
	What’s the Model, Anyway?
	How Many Types of Models Do You Know?
	The Models Folder

	Domain Model and View-Model
	Business Object Modeling
	Adding Validation Logic to the Model
	Data for the View

	Model Binding
	The Model Binder in Action

	Summary

	Part III: Programming Features
	Chapter 7: Data Entry in ASP.NET MVC
	The Select-Edit-Save Pattern
	Presenting Data
	Editing Data
	Saving Data

	Data Validation
	Validation on the Server Side
	Giving Feedback to the User
	Data Annotations and Validators
	Client-Side Validation

	Summary

	Chapter 8: The ASP.NET MVC Infrastructure
	Routing
	Dealing with Routes
	Keeping an Eye on SEO

	Error Handling
	Foundations of ASP.NET Error Handling
	Dealing with Missing Content

	Localization
	Making Resources Localizable
	Dealing with Resources in ASP.NET MVC

	Dependency Injection
	Dependency Inversion in Action
	A Brief Tour of Unity
	Creating a Global Container

	Summary

	Chapter 9: AJAX Capabilities
	AJAX in ASP.NET
	Partial Rendering
	Direct Scripting

	AJAX in ASP.NET MVC
	The JavaScript API
	The Controller Façade
	AJAX Helpers in ASP.NET MVC
	Partial Rendering in ASP.NET MVC

	Summary

	Chapter 10: Testability and Unit Testing
	Testability and Design
	Design for Testability
	Loosen Up Your Design

	Basics of Unit Testing
	Working with a Test Harness
	Aspects of Testing

	Unit Testing in ASP.NET MVC
	Testing Controller Actions
	Injecting Mocks and Fakes
	Mocking the HTTP Context
	More Specific Tests

	Summary

	Chapter 11: Customizing ASP.NET MVC
	The Controller Factory
	ASP.NET MVC Request Processing
	Extending the Default Controller Factory
	Invoking Actions

	Action Filters
	Gallery of Action Filters
	Loading Action Filters Dynamically
	Action Selectors

	Action Results and Rendering
	Processing the Result of the Action
	Custom ActionResult Objects
	View Engines
	HTML Helpers

	Summary

	Appendix: ReSharper and the Power of Tools
	IntelliSense Extensions
	Choose the Right View Name with IntelliSense Tips
	Action Links and URLs
	User Controls

	Static Analysis to Detect Missing Views and Actions
	Coding Assistants
	Creating Views by Usage

	Navigation
	Controller and View Navigation
	Locating Symbols
	Navigating Inside Master and Content Pages
	Refactoring for ASP.NET MVC

	Conclusion

	Index Page
	About the Author Page

